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Partial Least Squares 

Overview 

Partial least squares (PLS) analysis is an alternative to OLS regression, canonical 
correlation, or covariance-based structural equation modeling (SEM) of systems 
of independent and response variables. In fact, PLS is sometimes called 
“composite-based SEM”, "component-based SEM", or “variance-based SEM”, in 
contrast to "covariance-based SEM," which is the usual type (e.g., implemented 
by Amos, SAS, Stata, MPlus, LISREL, EQS and other major software packages).  

On the response side, PLS can relate the set of independent variables to multiple 
dependent (response) variables. On the predictor side, PLS can handle many 
independent variables, even when predictors display multicollinearity. PLS may be 
implemented as a regression model, predicting one or more dependents from a 
set of one or more independents; or it can be implemented as a path model, 
handling causal paths relating predictors as well as paths relating the predictors to 
the response variable(s). PLS is implemented as a regression model by SPSS and 
by SAS's PROC PLS. SmartPLS is the most prevalent implementation as a path 
model.  

PLS is characterized as a technique most suitable where the research purpose is 
prediction or exploratory modeling. In general, covariance-based SEM is preferred 
when the research purpose is confirmatory modeling. PLS is less than satisfactory 
as an explanatory technique because it is low in power to filter out variables of 
minor causal importance (Tobias, 1997: 1).  

The advantages of PLS include ability to model multiple dependents as well as 
multiple independents; ability to handle multicollinearity among the 
independents; robustness in the face of data noise and missing data; and creating 
independent latent variables directly on the basis of cross-products involving the 
response variable(s), making for stronger predictions. Disadvantages of PLS 
include greater difficulty of interpreting the loadings of the independent latent 
variables (which are based on cross-product relations with the response variables, 
not based as in common factor analysis on covariances among the manifest 
independents) and because the distributional properties of estimates are not 
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known, the researcher cannot assess significance except through bootstrap 
induction.  

Overall, the mix of advantages and disadvantages means PLS is favored as a 
predictive technique and not as an interpretive technique, except for exploratory 
analysis as a prelude to an interpretive technique such as multiple linear 
regression or covariance-based structural equation modeling. Hinseler, Ringle, 
and Sinkovics (2009: 282) thus state, "PLS path modeling is recommended in an 
early stage of theoretical development in order to test and validate exploratory 
models."  

Developed by Herman Wold (Wold, 1975, 1981, 1985) for econometrics and 
chemometrics and extended by Jan-Bernd Lohmöller (1989) , PLS has since spread 
to research in education (ex., Campbell & Yates, 2011), marketing (ex., Albers, 
2009, cites PLS as the method of choice in success factors marketing research), 
and the social sciences (ex., Jacobs et al., 2011). See Lohmöller (1989) for a  
mathematical presentation of the path modeling variant of PLS, which compares 
PLS with OLS regression, principal components factor analysis, canonical 
correlation, and structural equation modeling with LISREL.  

Data  

Data for the section on PLS-SEM with SmartPLS uses the file jobsat.csv, a comma-
delimited file which may also be read by many other statistical packages. For the 
jobsat file, sample size is 932. All variables are metric. Data are fictional and used 
for instructional purposes only. Variables in the jobsat.* file included these: 

• StdEduc: respondent’s educational level, standardized 
• OccStat: respondent’s occupational status 
• Motive1: Score on the Motive1 motivational scale 
• Motive2: Score on the Motive2 motivational scale 
• Incent1: Score on the Incent1 incentives scale 
• Incent2: Score on the incent2 incentives scale 
• Gender: Coded 0=Male, 1=Female. Used for PLS-MGA (multigroup analysis) 

SPSS, SAS, and Stata versions of jobsat.* are available below. 

• Click here for jobsat.csv, for SmartPLS 
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• Click here  for jobsat4.csv, for PLS-CTA in SmartPLS 
• Click here for jobsat.sav, for SPSS 
• Click here for jobsat.sas7bdat, for SAS 
• Click here for jobsat.dta, for Stata 

The section of PLS regression modeling  in SmartPLS uses the “HappyLife” data 
file. 

• Click here  for HappyLife.csv, for SmartPLS 

The section on PLS regression modeling in SPSS uses the SPSS sample file, 1991 
U.S. General Social Survey.sav. The USGSS1991.sas7bdat file is a different format 
of the same variables used for the SAS example. 

• Click here for 1991 U.S. General Social Survey.sav, for SPSS 
• Click here for USGSS1991.sas7bdat, for SAS 

Key Concepts and Terms 

Background 

Partial least squares (PLS) is sometimes called "Projection to Latent Structures" 
because of its general strategy, which is illustrated below. Note, however, that 
there may be more than one X component and more than one Y component and 
the arrows connecting the components to their indicators may be reflective as 
shown or may be reversed (reflective vs. formative modeling is discussed below).   
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The steps in the PLS-SEM algorithm, as described by Henseler, Ringle, & Sarstedt 
(2012), are summarized below. 

1. Preliminary to applying the PLS algorithm, the measured indicator variables 
are normalized to have a mean of 0 and a standard deviation of 1. In this 
context, normalized means standardized. PLS requires standardized latent 
variable scores, and since latent variables in PLS are linear combinations of 
the indicator variables, it is necessary that the indicator variables be 
standardized. A consequence is that both measurement (outer model) and 
structural (inner model) path coefficients vary from 0 to plus or minus 1, 
with paths closest to absolute 1 being the strongest 
 

2. In the first stage of the PLS algorithm, the measured indicator variables are 
used to create the X and Y component scores. To do this, an iterative 
process is used, looping repeatedly through four steps: 
 

i. Latent variable scores are given initial approximations based on 
equally weighted indicator scores.  

ii. Initial weights are assigned to the structural (inner) paths connecting 
the latent variables using a path weighting scheme based on 
regression, to maximize the R-squared of each endogenous latent 
variable. That is, component scores as estimated in a given iteration 
are used to calculate structural path weights.  Put a third way, using 
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regression, successive iterations adjust the structural weights to 
maximize the strength of the relation of successive pairs of X and Y 
component scores by maximizing the covariance of each X-score with 
the Y variables. This maximizes the explained variance of the 
dependent component. 

* Note that alternative to this path weighting scheme, factor-
based and centroid-based weighting schemes may be used by 
different algorithms. PLS-regression in SPSS and SAS, for 
instance, uses a factor-based weighting scheme. See below. 

iii. The structural (inner) weights are used to adjust the estimates of the 
latent variable scores.  

iv. The measurement (outer) weights connecting the latent variables to 
their indicator variables are estimated differently, depending on 
whether the model is reflective or formative (that is, which way the 
measurement arrows go, discussed below). For the usual reflective 
model, with arrows going from the latent variable to the indicator 
variables, measurement path weights are based on the covariances 
between the estimate of the latent variable and the indicator 
variable. If the model is formative, with arrows going from the 
indicators to the latent variable, measurement path weights are 
based on regression of the latent variable on its indicator. 

  
Iterations of these four steps stop when there is no significant change in the 
measurement (outer) weights of the indicator variables.  The weights of the 
indictor variables in the final iteration are the basis for computing the final 
estimates of latent variable scores. The final latent variable scores, in turn, are 
used as the basis of OLS regressions to calculate the final structural (inner) 
weights in the model. 

The overall result of the PLS algorithm is that the components of X are used to 
predict the scores of the Y components, and the predicted Y component scores 
are used to predict the actual values of the measured Y variables. This strategy 
means that while the original X variables may be multicollinear, the X components 
used to predict Y will be orthogonal. Also, the X variables may have missing 
values, but there will be a computed score for every case on every X component. 
Finally, since only a few components (often two or three) will be used in 
predictions, PLS coefficients may be computed even when there may have been 

Single User License. Do not copy or post.



PARTIAL LEAST SQUARES (PLS-SEM)          2016 Edition 
 

Copyright @c 2016 by G. David Garson and Statistical Associates Publishing Page 13 
 

more original X variables than observations (though results are more reliable with 
more cases). In contrast, any of these three conditions (multicollinearity, missing 
values, and too few cases in relation to number of variables) may well render 
traditional OLS regression estimates unreliable or impossible. The same is true of 
estimates by other procedures in the general and generalized linear model 
families.  

Models 

Overview 

Partial least squares as originally developed in the 1960s by Wold was a general 
method which supported modeling causal paths among any number of "blocks" of 
variables (latent variables), somewhat akin to covariance-based structural 
equation modeling, the subject of the separate Statistical Associates "Blue Book" 
volume, “Structural Equation Modeling.” PLS-regression models are a subset of 
PLS-SEM models, where there are only two blocks of variables: the independent 
block and the dependent block. SPSS and SAS implement PLS-regression models. 
For more complex path models it is necessary to employ specialized PLS software. 
SmartPLS is perhaps the most popular and is the software used in illustrations 
below, but there are alternatives discussed below.  

PLS-regression vs. PLS-SEM models 

PLS-regression models are an alternative to OLS regression or canonical 
correlation. PLS regression has been used, for instance, for econometric growth 
modeling (Korkmazoglu & Kemalbay, 2012). Comparing OLS and PLS regression, 
one simulation study (Temme, Kreis, & Lutz, 2006: 20) found "In our study, results 
for simulated data, however, are very similar to those resulting from OLS 
regression."   

PLS-SEM models, in contrast, are path models in which some variables may be 
effects of others while still be causes for variables later in the hypothesized causal 
sequence. PLS-SEM models are an alternative to covariance-based structural 
equation modeling (traditional SEM).  

For an extended critique of PLS-SEM as not being suitable as a structural equation 
modeling (SEM) approach, see Rönkkö & Evermann (2013). For critique of Rönkkö 
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& Evermann, see Henseler, Dijkstra, Sarstedt et. al. (2014). To summarize this 
complex exchange in simple terms, Rönkkö & Evermann took the view that PLS 
yields inconsistent and biased estimates compared to traditional SEM, and in 
addition PLS-SEM lacks a test for over-identification. Defending PLS, Henseler, 
Dijkstra, Sarstedt et. al. took the view that Rönkkö & Evermann wrongly assumed  
SEM must revolve around common factors and failed to recognize that “structural 
equation models allow more general measurement models than traditional factor 
analytic structures” on which traditional SEM is based (Bollen & Long, 1993: 1). 
That is, these authors argued that PLS should be seen as a more general form of 
SEM, supportive of composite as well as common factor models (for an opposing 
view, see McIntosh, Edwards, & Antonakis, 2014). Henseler et al. wrote “scholars 
have started questioning the reflex-like application of common factor models 
(Rigdon, 2013). A key reason for this skepticism is the overwhelming empirical 
evidence indicating that the common factor model rarely holds in applied 
research (as noted very early by Schönemann & Wang, 1972). For example, 
among 72 articles published during 2012 in what Atinc, Simmering, and Kroll 
(2012) consider the four leading management journals that tested one or more 
common factor model(s), fewer than 10% contained a common factor model that 
did not have to be rejected.” 

The critical bottom line for the researcher, agreed upon by both sides of the 
composite vs. common factors debate, is that factors do not have the same 
meaning in PLS-SEM models as they do in traditional SEM models. Coefficients 
from the former therefore do not necessarily correspond closely to those from 
the latter. As in all statistical approaches, it is not a matter of a technique being 
“right” or “wrong” but rather it is  a matter of properly understanding what the 
technique is.  

Components vs. common factors 

As mentioned above, traditional variance-based PLS-SEM is a component-based 
approach using a type of principle components analysis to construct latent 
variables. This contrasts with traditional covariance-based SEM, which uses a type 
of common factor analysis to create latent variables. While latent variables are 
traditionally conceptualized as common factors, a construct might also be a 
component, which is what they are in PLS-SEM.   
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Common factors models assume that all the covariation among the set of its 
indicator variables is explained by the common factor. In  a pure common factor 
model in SEM, in graphical/path terms, arrows are drawn from the factor to the 
indicators, and neither direct arrows nor covariance arrows connect the 
indicators.   

Component factors, also called composite factors, have a more general model of 
the relationship of indicators to factors. Specifically, it is not assumed that all 
covariation among the set of indicator variables is explained by the factor. Rather, 
covariation may also be explained by relationships among the indicators. In 
graphical/path terms, covariance arrows may connect each indicator with each 
other indicator in its set. Henseler, Dijkstra, Sarstedt, et al. (2014: 185) note, “the 
composite factor model does not impose any restrictions on the covariances 
between indicators of the same construct.”  

Traditional common factor based SEM seeks to explain the covariance matrix, 
including covariances among the indicators. Specifically, in the pure common 
factor model, the model-implied covariance matrix assumes covariances relating 
indicators within its own set or with those in other sets is 0 (as reflected by the 
absence of connecting arrows in the path diagram). Goodness of fit is typically 
assessed in terms of the closeness of the actual and model-implied covariance 
matrices.  

Traditional component based PLS-SEM does not attempt to explain the 
covariances connecting indicators. Henseler, Dijkstra, Sarstedt, et al. (2014: 186) 
write, “The composite factor model leaves the covariation between indicators of 
the same block unexplained, which means that the implied covariances between 
these indicators equal the empirical covariances”. 

In summary, latent variables in traditional PLS-SEM are components whereas in 
traditional SEM they are common factors. Because of this, PLS-SEM can be said to 
be more general than traditional SEM. Traditional SEM can be said to be more 
parsimonious than traditional PLS-SEM (fewer arrows in its model).  Whether the 
researcher’s data fits a common factor model or fits a component model better is 
an empirical question, the answer to which is conditional on the particular data at 
hand. Advocates of composite factor models are likely to assert that component 
(composite) models are more prevalent in the “real world” (Bentler & Huang, in 
press). In practice, researchers using traditional SEM may add covariance arrows 
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connecting indicators precisely because good fit cannot be achieved without 
moving toward a composite factor model (Bentler, 1976).  

This discussion applies to the traditional PLS algorithm. The “consistent PLS” 
(PLSc) algorithm discussed further below is employed in conjunction with 
common factor models and not with composite models. For a discussion of 
components vs. common factors in modeling, see Henseler, Dijkstra, Sarstedt, et 
al. (2014). For criticism, see McIntosh, Edwards, & Antonakis, 2014). 

Components vs. summation scales 

It is common in social science to create scales, which are a type of latent variable, 
simply by making the scale an additive (or otherwise weighted) sum of the 
indicators. In the PLS world, this is called the “sum score approach”. Typically, the 
sum score approach weights each indicator equally. The PLS-SEM approach, in 
contrast, gives more weight to indicators with higher predictive validity.  

As noted by Henseler, Dijkstra, Sarstedt, et al. (2014: 192), “PLS construct scores 
can only be better than sum scores if the indicators vary in terms of the strength 
of relationship with their underlying construct. If they do not vary, any method 
that assumes equally weighted indicators will outperform PLS.” That is, PLS-SEM 
assumes that indicators vary in the degree that each is related to the measured 
latent variable. If not, summation scales are preferable. SmartPLS 3 will use the 
sum scores approach if, as discussed below, maximum iterations are set to 0. 

PLS-DA models 

PLS-DA models are PLS discriminant analysis models. These are an alternative to 
discriminant function analysis, for PLS regression models where the 
dependent/response variable is binary variable or a dummy variable rather than a 
block of continuous variables.  

Mixed methods 

Note that researchers may combine both PLS regression modeling with PLS-SEM 
modeling. For instance, Tenenhaus et al. (2004), in a marketing study, used PLS 
regression to obtain a graphical display of products and their characteristics, with 
a mapping of consumer preferences. Then PLS-SEM was used to obtain a detailed 
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analysis of each consumer group by building a causal model involving consumer 
preference, physico-chemical, and sensory blocks of variables.  

Bootstrap estimates of significance 

As the distribution of PLS is unknown, conventional significance testing is 
impossible. However, testing may be accomplished by resampling methods such 
as the bootstrap or the jacknife, as illustrated by Davies (2001). Resampling 
methods do not have specific sample size requirements but the smaller the 
sample, the more likely that fitted confidence limits will be fitted to noise in the 
data rather than to a true underlying distribution. Wakeling & Morris (2005), 
based on Monte Carlo simulation studies, have created tables of critical values of 
r2

cv. Since resampling estimates are data-driven, results may not hold up for other 
datasets and therefore cross-validation is recommended (ex., developing the PLS 
model for even-numbered observations an validating it for odd-numbered 
observations, after randomizing the order of observations).  

Some PLS packages use bootstrapping (e.g., SmartPLS) while other use jackknifing 
(e.g., PLS-GUI).   Both result in estimates of the standard error of regression paths 
and other model parameters. The estimates are usually very similar. 
Bootstrapping, which involves taking random samples and randomly replacing 
dropped values, will give slightly different standard error estimates on each run. 
Jackknifing, which involves a leave-one-out approach for n – 1 samples, will 
always give the same standard error estimates. Where jackknifing estimates the 
point variance, bootstrapping estimates the point variance and the entire 
distribution and thus bootstrapping is required when the research purpose is 
distribution estimation. As the research purpose is much more commonly 
variance estimation, jackknifing is often preferred on grounds of replicability and 
being less computationally intensive.  

Reflective vs. formative models 

A path model is reflective if in the path diagram causal arrows go from the latent 
variable (factor) to the measured indicator variables. A path model is formative if 
the arrows go from the observed measures to the latent variables. Sometimes 
reflective models are called “Mode A” models and formative models are called 
“Mode B” models. SmartPLS allows both types of models (choose Selection, Invert 
measurement model from the menu).  
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Both traditional SEM and PLS-SEM support both reflective and formative models. 
By historical tradition, reflective models have been the norm in structural 
equation modeling and formative  models have been the norm in partial least 
squares modeling.  This is changing as researchers become aware that the choice 
between reflective and formative models should depend on the nature of the 
indicators.  

It should be noted there is a controversy in the literature with regard to the 
proper statistical modeling procedure for reflective and formative models. 
Adherents to the PLS approach, such as Christian Ringle, Oliver Götz, et al. (2009). 
(2014) and Jörg Henseler, Theo Dijkstra, Marko Sarstedt, et al. (2014), see PLS 
being applicable to both reflective and formative models. Critics such as 
McIntosh, Edwards, & Antonakis (2014: 215) express the view that PLS should be 
applied only to formative composite models (see discussion above), not to 
common factors models, since traditional SEM (covariance-based SEM) has 
superior statistical properties for reflective latent variable models.   

 

In reflective models, indicators are a representative set of items which all reflect 
the latent variable they are measuring. Reflective models assume the factor is the 
"reality" and measured variables are a sample of all possible indicators of that 
reality. This implies that dropping one indicator may not matter much since the 
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other indicators are representative also. The latent variable will still have the 
same meaning after dropping one indicator. 

In formative models, each indicator represents a dimension of meaning of the 
latent variable. The set of indicators collectively represent all dimensions of the 
latent variable. Formative models assume the indicators are "reality" and are all 
the dimensions of the factor. Dropping an indicator in a formative model is 
equivalent to dropping a dimension of meaning, causing the meaning of the latent 
variable to change. To the extent that a dimension dropped is important, the 
meaning of the latent variable will change. The researcher may retain the same 
label for the latent variable (ex., “motivation”) even though the dimensions 
change, misleading readers into thinking “motivation” means the same thing 
across models.   

Albers and Hildebrandt (2006; sourced in Albers, 2010: 412) give an example for a 
latent variable dealing with satisfaction with hotel accommodations. A reflective 
model might have the representative measures “I feel well in this hotel”, “This 
hotel belongs to my favorites”, “I recommend this hotel to others”, and “I am 
always happy to stay overnight in this hotel.” A formative model, in contrast, 
might have the constituent measures, “The room is well equipped”, “I can find 
silence here”, “The fitness area is good”, “The personnel are friendly”, and “The 
service is good”.  

Suppression is another possible problem in formative models.  Because the 
indicator items in a formative model represent different dimensions, there is the 
possibility one item may be negatively correlated with another.  If a first item is 
negatively related to a second indicator but positively related to the latent 
variable, the positive correlation of the second indicator with the latent variable 
may be suppressed due push-pull effect of the co-occurrence of positive and 
negative weights (see Henseler, Ringle, & Sarstedt, 2012: 270). 

SmartPLS outputs a table of “Indicator Data (Correlations)”, shown below. Output 
for reflective and formative models is identical. Coefficients are the raw bivariate 
correlations. For a reflective model, one would expect the correlations of 
indicators for the same construct would be high since indicators should be 
representative measures of the same phenomenon. For instance, the correlation 
of Incent1 with Incent2 for the construct Incentives is .656.  For a formative 
model, indicators should represent different dimensions of the phenomenon and 
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would not be expected to necessarily correlate highly unless there are multiple 
measures for the same dimension. Examination of this table provides one type of 
evidence of whether the data should be modeled reflectively or formatively. 

 

In terms of estimation methods discussed further below, the traditional PLS 
algorithm is well suited for formative and composite models. In early applications 
of PLS, formative modeling was more prevalent than reflective modeling, quite in 
contrast to the tradition of covariance-based structural equation modeling, where 
reflective modeling has always been dominant. Some, such as Rigdon (2013), have 
even argued that the use of PLS should be restricted to formative and composite 
measurement models (see response to Rigdon by Dijkstra, 2014). The “consistent 
PLS” algorithm (PLSc), discussed below, is designed to produce consistent 
estimated for reflective models and may be preferred in reflective applications.  

Confirmatory vs. exploratory models 

Most statisticians see PLS is seen as an exploratory procedure. Wold himself 
(1981) advised against using PLS for confirmatory models since PLS lacks 
goodness-of-fit tests, which in turn means absence of criteria for selecting the 
optimum model.  The literature, however, reveals more confirmatory than 
exploratory uses of PLS modeling by a large margin. 
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Inner (structural) model vs. outer (measurement) model 

When a model is created, factors are represented by ellipses and indicator 
(measured) variables by rectangles. The factor ellipses and arrow creating them 
are called the inner or structural model. The indicator rectangles and arrows 
connecting them are called the outer or measurement model. This is illustrated 
below.  

 

Endogenous vs. exogenous latent variables 

These are terms pertaining to the inner or structural model. A latent variable is 
exogenous if it is not an effect of any other latent variable in the model (there are 
no incoming arrows from other latent variables). A latent variable is endogenous 
it is an effect of at least one other latent variable (there is at least one incoming 
arrow from another latent variable). In the diagram above, SES and INCENTIVES 
are exogenous while MOTIVATION is endogenous. 
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Mediating variables 

A mediating variable is simply an intervening variable. In the model below, 
Motivation is a mediating variable between SES and Incentives on the one hand 
and Productivity on the other.  

If there were also direct paths from SES and/or Incentives to Productivity, the SES 
and/or Incentives would be anteceding variables (or “moderating variables” as 
defined below) for both Motivation and Productivity. Motivation would still be a 
mediating variable.    

A common type of “mediator analysis” involving just such mediating and 
moderating effects is to start with a direct path, say  SES -> Productivity, then see 
what the consequences are when an indirect, mediated path is added, such as SES 
-> Motivation -> Productivity. There are a number of possible findings when the 
mediated path is added: 

• The correlation of SES and Productivity drops to 0, meaning there is no SES-
>Productivity path as the entire causality is mediated by Motivation. This is 
called a “full control” effect of Motivation as a mediating variable. 

• The correlation of SES and Productivity remains unchanged, meaning 
mediated path is inconsequential. This is “no effect”.  

• The correlation of SES and Productivity drops only part way toward 0, 
meaning both the direct and indirect paths exist. This is called “partial 
control” by the mediating variable. 

• The correlation of SES and Productivity increases compared to the original, 
unmediated model. This is called “suppression” and would occur in this 
example if the effect of SES directly on productivity and the effect of SES 
directly on Motivation were opposite in sign, creating a “push-pull” effect. 
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Moderating variables 

The term “moderating variable” has been used in different and sometimes 
conflicting ways by various authors. Some writers use “mediating” and 
“moderating” interchangeably or flip the definition compared to other scholars. 
For instance, a mediating variable as described above does affect or “moderate” 
the relationship of variables it separates in a causal chain and thus might be called 
a moderating variable.  It is also possible to model interactions between latent 
variables and latent variables representing interactions may be considered to 
involve moderating variables. Multigroup analysis of heterogeneity across groups, 
discussed further below, is also a type of analysis of a moderating effect. 

However, as used here, a moderating variable is an anteceding joint direct or 
indirect cause of two variables further down in the causal model. In the 
illustration below, SES is modeled as an anteceding cause of both Incentives and 
Motivation. 
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In the model above, adding SES to the model may cause the path from Incentives 
to Motivation to remain the same (no effect), drop to 0 (complete control effect 
of SES), drop part way to 0 (partial control effect), or to increase (suppression 
effect).  

Spurious effects 

If two variables share an anteceding cause, they usually are correlated but this 
effect may be spurious. That is, it may be an artifact of mutual causation. A classic 
example is ice cream sales and fires. These are correlated, but when the 
anteceding mutual cause of “heat of the day” is added, the original correlation 
goes away. In the model above, similarly, if the original correlation of Incentives 
and Motivation disappeared when the mutual anteceding cause SES was added to 
the model, it could be inferred that the originally observed effect of Incentives on 
Motivation was spurious. 

Suppression 

A suppression effect occurs when the anteceding variable is positively related to 
the predictor variable (ex., Incentives) and negatively related to the effect 
variable (ex., Motivation). In such a situation the anteceding variable has a 
suppressing effect in that the original Incentives/Motivation correlation without 
SES in the model will be lower than when SES is added to the model, revealing its 
push-pull effect as an anteceding variable. Put another way, the effect of 
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Incentives on Motivation initially appears weaker than it really is because, as seen 
when SES is added to the model, the correlation is suppressed by SES as a 
moderating variable. 

Interaction terms 

An interaction term is an exogenous moderator variable which affects an 
endogenous variable by way of a non-additive joint relation with another 
exogenous variable. While it may also have a direct  effect on the endogenous 
target variable, the interaction is its non-additive joint relationship  In the diagram 
below, top, without interaction effect, latent variables A and B are modeled as 
causes of Y. Let moderator variable M be added as a third cause of Y. The 
researcher may suspect, however, that M and A have a joint effect on Y which 
goes beyond the separate A and M linear effects – that is, an interaction effect is 
suspected. 

There are two popular methods for modeling such a hypothesized interaction. 
The first, the product indicator method, is illustrated below. This method may 
only be used for reflective models. In this approach, a new latent variable (the 
A*M factor) is added to the model whose indicators are the products of every 
possible pair of indicators for A and for M. For instance, its first indicator is 
INDM1*INDA1, being the product of the first indicator for M times the first 
indicator for A.  If there is an interaction effect beyond the separate linear effects 
of A and M, then the path from A*M to Y will be significant. 
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A popular second approach to modeling interactions is depicted in the figure 
below. This is the latent variable score (LVS) approach, based on the product of 
latent variable scores. Unlike the product indicator approach, the latent variable 
score approach can be used when exogenous variables are modeled formatively, 
as in stage 1 of the figure below, or they may be modeled reflectively. The LVS 
approach requires two stages. In stage 1 (below top), A, B, and M are modeled as 
exogenous causes of Y, the endogenous variable. As part of stage 1, latent 
variable scores are created for all factors in the model.  
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In stage 2, all factors are modeled with a single indicator, which is their latent 
variable score from stage 1. Since latent variables with single indicators are set 
equal to their indicators, it does not matter whether they are modeled reflectively 
or formatively. Also, a new latent variable is created whose single indicator is the 
product of the stage 1 latent variable scores for A and for M.  The A*M interaction 
is significant if its path to Y is significant in the stage 2 run of the model. 

 

Simulation studies by Chin (2010) suggest that the product indicator approach 
produces more accurate parameter estimates than does the latent variable score 
method. Hair et al. (2014: 265) recommend the product indicator method when 

Single User License. Do not copy or post.



PARTIAL LEAST SQUARES (PLS-SEM)          2016 Edition 
 

Copyright @c 2016 by G. David Garson and Statistical Associates Publishing Page 28 
 

the research purpose is hypothesis testing but recommend the latent variable 
score approach when the purpose is prediction. 

Partitioning direct, indirect, and total  effects 

The path multiplication rule may be used to estimate direct and indirect effects 
when, as in the model depicted above, one variable (SES) has a direct effect on 
another (Motivation) as well as in indirect effect (from SES to Incentives to 
Motivation). The direct effect is the standardized structural coefficient, also 
known as the inner model loading of SES on Motivation. The indirect effect is the 
product of the path coefficient for SES-> Incentives times the path coefficient for 
Incentives -> Motivation. In more complex models there may be more than two 
paths multiplied together to get the indirect effect. The total effect of SES on 
Motivation is the sum of its direct and indirect effects. 

Consider the model below, which has standardized path coefficients placed on its 
arrows. 

 

The effects are these: 

SES -> INCENTIVES: Direct =-0.437; Indirect = n/a; Total = -0.437 

SES-> MOTIVATION: Direct = -0.243; Indirect = -0.437*0.512 =  -0.224; Total = 
     -0.243 + (-0.224) = -0.466 
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INCENTIVES->MOTIVATION: Direct = 0.512; Indirect = n/a; Total = 0.512 

Partitioning the effects shows that SES has a smaller total absolute effect on 
MOTIVATION than does INCENTIVES (-.467 vs. .512), with the total effect of SES 
being negative and that of INCENTIVES being positive.  

The table below shows corresponding SmartPLS output. “Path Coefficients” are 
the direct effects which, when added to the “Indirect Effects” yield the “Total 
Effects”. 

 

Variables  

PLS regression and modeling may involve any of the types of variables discussed 
below.  
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Case identifier variable 

This is the case ID variable used for casewise output and saved datasets.  

Measured factors and covariates 

Measured covariates are the measured (manifest) continuous variables entered 
as measures for the dependent and independent variables. Measured factors are 
the measured categorical variables entered as dummy variables in the model. 
(Note this use of “factors” is not to be confused with the more common use of 
that term to refer to latent variables.) Multiple measured independent and 
dependent variables are used to construct PLS factors and PLS responses 
respectively.  

Modeled factors and response variables 

In other contexts, factors are categorical variables used as predictors. In the 
context of PLS-SEM, factors are the latent variables which are extracted as linear 
(usually equally weighted) combinations of the measured (indicator) variables. For 
PLS-regression, which uses a factor rather than path weighting scheme, the 
researcher may specify how many factors to extract from the measured indicator 
variables. For PLS-regression, ordinarily the first 3 - 7 factors will account for 99% 
of the variance (five factors is the default in PLS-regression in SPSS, for example).  

Latent variables in PLS vs. SEM. Note that PLS factors are not the same as the 
latent variables in common factor analysis in the usual covariance-based 
structural equation modeling (SEM). Where SEM is based on common (principal) 
factor analysis, PLS-regression is based on principal component analysis (PCA). 
(PCA is discussed more fully in the separate Statistical Associates "Blue Book" on 
“Factor Analysis”). Many reserve the term "latent variable" for those created 
based on covariances, as in covariance based SEM, referring to PLS factors as 
“components” or "weighted composites."  

The term "composite" refers to the fact that PLS factors are estimated as exact 
linear combinations of their indicators. True latent variables in SEM, in contrast, 
are computed in a manner which reflects the covariation of their indicators 
(McDonald, 1996). While a PLS-SEM model of causal relations among composites 
may approximate a SEM path model of causal relations among latent variables 

Single User License. Do not copy or post.



PARTIAL LEAST SQUARES (PLS-SEM)          2016 Edition 
 

Copyright @c 2016 by G. David Garson and Statistical Associates Publishing Page 31 
 

(McDonald, 1996) the two are not equivalent and under certain circumstances 
may diverge considerably. Only when the PLS weight vector is proportional to the 
SEM common factor loading vector will SEM and PLS factors be similar (see 
Schneeweiss, 1993).  

Number of latent variables in PLS regression. In PLS-SEM modeling, the number of 
latent variables is determined a priori by theory. In PLS regression, however, both 
PLS responses and PLS factors are not specified a prior by the researcher, though 
researcher must specify how many latent variables to extract. Both predictor and 
response variables will have the same number of factors. There is no one criterion 
for deciding how many latent variables to employ. Common alternatives are:  

Cross-validating the model with increasing numbers of factors, then choosing the 
number with minimum prediction error on the validation set. This is the most 
common method, where cross-validation is "leave-one-out cross-validation" 
discussed below, prediction error may be measured by the PRESS statistic 
discussed below, and models are computed for 1, 2, 3, .... c factors and the model 
with the lowest PRESS statistic is the most explanatory.  

Alternatively one may use the method above to identify the model with the 
lowest prediction error, then choose the model with the least number of factors 
whose residuals are not significantly greater than that lowest prediction error 
model. See van der Voet (1994).  

In a third alternative, models may be computed for 1, 2, 3, .... factors, and the 
process stopped when residual variation reaches a given level. 

Single-item measures 

Measures used in modeling, including PLS modeling, are often validated scales 
composed of multiple items, as in a scale of “authoritarian leadership.” Multiple 
items generally increase reliability and improve model performance compared to 
single-item measures. In some cases, however, item reliability is not at issue 
because it may be assumed that measurement is without error or very close to it. 
Candidates for single-item measurement include such variables as gender, age, or 
salary. Also, single-item variables may cause identification and convergence 
problems in covariance-based SEM, but this is not a problem in PLS-SEM. 
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Measurement level of variables 

The permitted measurement level of the indicator variables varies by package, as 
discussed below in the "Assumptions" section. In SPSS PLS regression, when first 
running PLS, the user must specify measurement levels. This is essential in SPSS, 
which uses a multiple regression algorithm for scalar dependent variables and a 
classification algorithm for categorical dependent variables, or a mixed model if 
both types of predictors are used. Note that in SPSS the user can temporarily 
change the measurement level setting for a variable to investigate what 
difference it makes, say, to treat an ordinal survey item as if it were interval 
(however, covariates must be coded as numeric).  

Categorical variable coding. Both nominal and ordinal variables are treated the 
same, as categorical variables, by SPSS algorithms. Dummy variable coding is 
used. For a categorical variable with c categories, the first is coded (1, 0, 0,...0), 
where the last 0 is for the cth category. The last category is coded (0, 0, 0, .... 1). In 
the PLS dialog, the researcher specifies which dummy variable representing 
desired reference category is to be omitted in the model. When prompted at the 
start of the PLS run, click the "Define Variable Properties" button to obtain first a 
dialog letting the user enter the variables to be used, then proceed to the "Define 
Variable Properties" dialog, shown above. SPSS scans the first 200 (default) cases 
and makes estimates of the measurement level, classifying variables into nominal, 
ordinal, or scalar (interval or ratio). Symbols in front of variable names in the 
"Scanned variable list" on the left show the assigned measurement levels, though 
these initial assignments can be changed in the main dialog, using the drop-down 
menu for "Measurement Level". It is a good idea to check proper assignment of 
missing value codes and other settings in this dialog also. Clicking the "Help" 
button explains the many options available in the "Define Variable Properties" 
dialog.  
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Parameter estimates 

Simulation studies comparing PLS-SEM and covariance-based SEM tend to 
confirm that PLS serves prediction purposes better when sample size is small 
(Hsu, Chen, & Hsieh, 2006: 364-365; see also discussion of sample size below). 
However, such studies also suggest that PLS exhibits a downward bias, 
underestimating path coefficients (Hsu, Chen, & Hsieh, 2006: 364; see also Chin, 
1998; Dijkstra, 1983) and SEM serves prediction purposes better for large sample 
size.  

Cross-validation and goodness-of-fit 

Compared to covariance-based SEM, PL-SEM lacks the variety of goodness of fit 
measures to assess overall model fit. However, cross-validation indices (cv-
redundancy and cv-communality) are supported by some existing PLS software 
programs. In cross-validation, the PLS model is developed for all the cases save 
one, then tested on that hold-out case. This is repeated n times, with each case 
used as the validation case in turn. In addition to this leave-one-out form of cross-
validation (also called "full cross-validation"), software (ex., SAS) may support 
cross-validation by splitting the data into blocks or by reserved test set validation. 
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Leave-one-out cross-validation is recommended for small and medium datasets; 
split sample and reserved test set methods require large samples. The cross-
validation coefficient, r2

cv, is the percent of variance explained in the dependent 
variate by the predictions from the leave-one-out process (see Wakeling & 
Morris, 2005: 294). That is,  

r2cv = (RSS - PRESS)/RSS 

where RSS is the initial sum of squares for the dependent variable and PRESS is 
the PRESS statistic discussed below. Wakeling & Morris (2005: 298-300), using 
Monte Carlo simulation methods, have developed tables of critical values of r2

cv 
for one-, two-, and three-dimensional models, for datasets with given numbers of 
rows and columns. Thus r2

cv greater than the critical value may be taken as 
significant, and the researcher may select the model with the least number of 
dimensions with a significant cross-validation statistic as being the most 
parsimonious and therefore optimal model.  

PRESS and optimal number of dimensions 

In PLS regression in SPSS and some other packages, the predicted residual sum of 
squares (PRESS) for cross-validation is computed for the 0-factor model, the 1-
factor model, the 2-factor model, etc. PRESS can be used to determine the 
optimal number of factors. Extracting the maximum number of factors 
(dimensions) gives a fully explanatory model which is overfitted and trivial. 
Correspondingly, as one adds dimensions, PRESS becomes lower and lower but 
then at some point may rise. Plotting PRESS by number of dimensions gives a 
scree plot, and the researcher may opt for the model (number of dimensions) 
where the scree plot curve forms an elbow and levels off. However, as in factor 
scree plots, there may be more than one "elbow" and researcher discretion is 
involved in selection of the exact number of dimensions for the best model. 
Alternatively, the researcher may select the first or the global minimum PRESS 
points as the basis for identifying the corresponding number of dimensions for 
the optimal model. In yet another alternative, the researcher may use the critical 
values of r2

cv method discussed above. It may be noted that yet other, albeit less 
popular, criteria have also been proposed.  
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PLS-SEM in SPSS, SAS, and Stata 

Overview 

At this writing, PLS-SEM is not supported by SPSS, SAS,  or Stata, which only 
support PLS regression, as discussed later in this volume.   

PLS-SEM in SmartPLS 

Overview 

SmartPLS, a free, user-friendly modeling package for partial least squares analysis, 
is supported by a community of scholars centered at the University of Hamburg 
(Germany), School of Business, under the leadership of Prof. Christian M. Ringle. 
SmartPLS 3  is illustrated in this volume. The website is  http://www.smartpls.de . 
Example projects are located at http://www.smartpls.de/documentation/index. 
As a side note, SmartPLS is a successor to the PLSPath software used in the 1990s.   

SmartPLS comes in four variants: 

1. SmartPLS 3 Student: All algorithms are supported, but data are restricted to 
100 observations although the number of projects is unlimited. Free. 

2. SmartPLS 3 Professional: All algorithms; unlimited observations and 
projects; export results to Excel, R, and html; copy results to clipboard; 
export the graphical model; prioritized technical support; customizable 
display. Fee. 

3. SmartPLS 3 Professional 30-day trial version: Free. 
4. SmartPLS 3 Enterprise: Same as SmartPLS 3 Professional but for up to thee 

installations and with method support service, results review service, and 
personal support via Skype. Fee. 

After registering, a video-based manual is available by entering this url in a web 
browser: file:///C:/SmartPLS/Handbook/index.html (assuming SmartPLS is 
installed in this default folder).  For further reference, see Ringle, Wende, and Will 
(2005) and Ringle (2006); Hair, Hult, Ringle, & Sarstedt (2014).     
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Estimation options in SmartPLS 

From the SmartPLS menu, selecting the “Calculate” icon causes the menu shown 
below to appear, from which the researcher may select one of the estimation 
methods shown. The “PLS Algorithm” option computes in the standard (default) 
PLS solution.  

 

Each of these estimation options is considered in a separate section below. 

1. PLS Algorithm 
2. Consistent PLS Algorithm 
3. Bootstrapping 
4. Consistent PLS Bootstrapping 
5. Blindfolding 
6. Confirmatory Tetrad Analysis (CTA) 
7. Importance-Performance Matrix Analysis (IPMA) 
8. Finite Mixture Segmentation (FIMIX) 
9. Prediction-Oriented Segmentation (POS) 
10.  Multi-Group Analysis (MGA) 
11.  Permutation 
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Note that the section below on “Running the PLS algorithm” contains information 
on model construction and options which apply to other algorithms as well.  For 
other estimation options, only unique output not discussed in the “PLS Algorithm” 
section is presented. The reader is therefore encouraged to read the “PLS 
Algorithm” section first before proceeding to other estimation option sections. 

Running the PLS algorithm 

Options 

This section describes running the original PLS algorithm for the simple path 
model described below. The “consistent PLS algorithm”, usually called just the 
“PLS algorithm”, is the default standard partial least squares modeling procedure.   

The PLS algorithm may be run only after a model is created following steps 
described below. After the path model is created, the researcher double-clicks on 
the path model in the Project Explorer pane on the left. This will reveal the path 
diagram and above it an icon, the “PLS Algorithm” icon, which may be clicked to 
run the consistent PLS algorithm. Alternatively, selecting Calculate > PLS 
Algorithm from the main menus also instructs SmartPLS to run  the model using 
default standard estimation methods. 

Running the PLS algorithm brings up the options screen shown below. Typically, 
the researcher accepts all defaults and clicks the “Start Calculation” button in the 
lower right. 
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Elements of this dialog are described below. Description is also found in the dialog 
itself under “Basic Settings” in the right-side pane of the dialog. 

• “Read more!” button: (Upper right). This opens a page of general 
description and bibliography about the PLS algorithm. This option is gives 
the same page as clicking the “PLS Algorithm” tab in the same dialog. 
 

• Weighting Scheme: Weighting refers to assigning weights to the structural 
(inner model) path coefficients. In addition to the default “Path” choice, 
“Centroid” or “Factor” may be selected. Noonan & Wold (1982) found that 
the choice of weighting schemes made little difference in path estimates:   
< .005 for structural (inner) paths and < .05 for measurement (outer) paths. 
 

o  The path method maximizes the R2 value of endogenous latent 
variables in the current model, with the latent variable estimated 
based on regression.  This method was introduced by Lohmöller 
(1989) and is the method recommended by Henseler, Ringle, & 
Sarstedt (2012), Hair et al. (2014), and many others. It is the default 
in SmartPLS.  
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o The factor method maximizes the variance of the principal 
component and estimates the latent variable based on the 
correlation of the exogenous and endogenous latent variables. It is 
not appropriate when the researcher is positing the directionality of 
the relationships connecting latent variables as, unlike the path 
method, directionality information is not taken into account. This 
method was also introduced by Lohmöller (1989).   
 

o The centroid method, used if path or factor methods do not converge 
on a solution, is an older approach used when the correlation matrix 
of the latent variables is singular. The original approach used by Wold 
(1975), the “father of PLS”, the centroid method estimates the latent 
variable based on other latent variables in the model. The centroid 
method is not appropriate when there are second-order or higher 
latent variables in the model. Weights are based on the sign of the 
correlation of the exogenous and endogenous latent variables. When 
the correlation is close to 0, small data fluctuations may have strong 
effects on the model. See  Henseler, Ringle, & Sinkovics (2009). 
 

• Maximum Iterations: The default is 300 iterations while seeking 
convergence on a solution. The default is almost always selected by 
researchers. A larger number, such as 1,000, may be entered in one 
strategy for dealing with a convergence problem. Unlike covariance-based 
structural equation modeling (SEM), however, convergence problems in 
PLS-SEM are unusual. A model which stops due to the maximum iterations 
limit rather than the stop criterion has not yielded reliable results and the 
model should be respecified. Setting maximum iterations to 0 causes 
SmartPLS to run the “sum scores” approach (see discussion above on sum 
scores). 
 

• Stop Criterion: SmartPLS will stop when the change in outer weights (path 
weights connecting the indicator variables to the latent variables) do not 
change more than a very small amount. The default amount is 10-7.  When 
dealing with a convergence problem, a slightly larger amount might be 
selected, such as 10-5. Changing the stopping criterion in such a rare 
instance would have negligible impact on the resulting coefficients. This 
default is very rarely overridden by the researcher.   
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• Initial Weights:  The outer weights (paths connecting the indicator variables 

to their latent variables) must be initialized to some value before the 
iterative PLS estimation process begins.  The default, which is almost always 
taken by researchers, is to set these weights to +1. Alternatives are (1) to 
click “individual initial weights” and enter user-desired weights manually, or 
(2) to check “Use Lohmöller Settings”. The Lohmöller setting is an attempt 
to speed up convergence by setting all weights to +1 but setting the last 
weight to -1.  Online help documentation states, however, “this 
initialization schema can lead to counterintuitive signs of estimated PLS 
path coefficients in the measurement models and/or in the structural 
model” and is thus disparaged. 
 

• Weighting tab: Clicking the “Weighting” tab opens a new dialog pane which 
prompts the researcher for a “Weighting Vector”. A pull-down menu allows 
the researcher to select one of the variables in the current data as a 
weighting variable. For instance, the weighting  variable might be one 
generated by weighted least squares (WLS), which attempt to compensate 
for heterogeneity by weighting each observation by the inverse of its point 
variance. Any such weights are computed outside of and prior to running 
SmartPLS. Weights could also be used to compensate for differences in 
sampling proportions for different subgroups of the sample. In a third use, 
weights might be the probabilities of group memberships as computed in a 
PLS-FIMIX run of the model (FIMIX is discussed below). 
 

• Open Full Report button: Usually the researcher will want automatic 
generation of the full report. Other options are “Close Calculation Dialog” 
or “Leave Calculation Dialog Open”.  

Data input and standardization 

SmartPLS needs raw data input, not standardized data. Standardization is 
implemented automatically and all indicator weights and latent variable scores 
are always standardized. Correlation matrix input (correlations are standardized 
coefficients)  is not supported by PLS 3 for this reason. This differs from SmartPLS 
2, where there was a dialog choice for data standardization. 
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Single indicator latent variable: If there is only a single indicator for a latent 
variable, the latent variable score will be the standardized score of the indicator. 

Interaction effects:  If an indicator is a product variable (ex., income*education), 
using mean-centered variables is recommended (Jan-Michael Becker, 2014, post 
to the SmartPLS Forum). Note, however, this affects the interpretation of results 
as discussed in the literature on moderated multiple regression. At present 
SmartPLS supports only two-variable interaction effects. 

Setting the default workspace 

By default, SmartPLS will save projects and data to a workspace located in a 
directory similar to C:\Users\YourName\smartpls_workspace\. This can be 
changed by selecting File > Switch Workplace. 

Creating a PLS project and importing data 

Select File > Create new project (or click the “New Project” icon) to view the 
window illustrated below. When prompted, assign a project name (in the 
example, the project name is "Motivation").  Click the "OK" button.  

 

After clicking “OK”, the screen below appears. Double-click where indicated by 
the red arrow in the figure below. 
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After double clicking, the usual Windows-type catalog browsing screen will 
appear (not shown). Browse to the folder where the data file is located, which 
here is jobsat.csv – a comma-delimited file described above. SmartPLS supports 
importation only of .csv and .txt text-type data files. Note, however, that SPSS, 
SAS, and Stata can save .csv files for use by SmartPLS.  

On loading this file, the main SmartPLS program screen will appear as shown 
below. Note that “jobsat” appears as a dataset under the just-created 
“Motivation” project in the upper left of the screen. The variable list and 
summary statistics about each variable appear in the lower right (later the 
variable list will appear in the “Indicators” area in the lower left). Sample size, 
missing value information, and certain other information appears in the upper 
right. 

If there is a missing-values code, it may be entered by clicking the “ None” link 
shown below after “Missing Value Marker , such as "-99". The example dataset 
does not include missing values. Only one missing value code is supported. If 
there are more, the researcher may need to impute missing values in SPSS or 
another package prior to running SmartPLS.    
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 At this point, the default workspace will contain the following files: 

• Motivation.splsm: This is the SmartPLS project file.  
• jobsat.txt:  This is the jobsat.csv file re-saved as a .txt file. If the “Raw File” 

tab in the figure above is clicked (in the lower right), the raw jobsat data are 
displayed. 

• jobsat.txt.aggregated: This is an internal file containing means and other 
descriptive statistics on the variables. Much of this information is displayed 
when, as shown above, the “Indicators” tab is selected in the lower right. 

• jobsat.txt.meta: This is another internal file containing information on the 
missing value token, the value separator, and other metadata. 

Note the user interface allows switching among multiple projects and datasets, 
according to the tab pressed in the Project Explorer area at the top left. 

Validating the data settings 

With the “Indicators” tab selected (see previous figure above), notice it the 
variable names, ranges, and means appear correctly.  Normally they will be 
correctly displayed automatically as they are for the current example, which uses 
a comma delimiter, no quotes around values, U.S. rather than European number 
format, and no missing value markers. 
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If not displaying correctly, the researcher may need to change the settings for 
Delimiter, Value Quote Character, Number Format, or Missing Value Marker by 
clicking the corresponding links in the upper right quadrant of the display. It is 
also possible to inspect the raw data file by clicking on the “Raw File” tab for 
insight into the proper setting. When a setting is changed, the display for the 
“Indicator” tab will change but not for the “Raw File” tab. Change settings until 
the “Indicator” tab display appears to be correct.  

These and additional settings may also be changed under the menu selection  File 
> Preferences. 

If there are illegal cell entries, such as blanks, the researcher must quit, make the 
corrections, then restart. 

Drawing the path model 

Below, a model is created in which Motivation is caused by Incentives and 
Socioeconomic Status (SES), with each variable being measured by two indicators.  

Double-click on the Motivation  path diagram (the motivation.splsm file) in the 
upper left of the screen above, in the Project Explorer area, to display the model 
viewing area, which initially is blank, as shown below. Note this is the lower 
“Motivation” label. The upper “Motivation” label is the project name. A project 
might have multiple path diagrams, though in this example there is only one. 

 

Measured variables in the dataset appear in the Indicators window in the lower 
left.    
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To create the path model, select the Latent Variable tool, shown by the arrow 
pointer in the figure below, to drag and draw the three ellipses. The researcher 
may also select Edit > Add latent variable(s) to be able to create multiple latent 
variables while holding down the Shift key. 
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Right-click on the ellipses to reveal a context menu, from which choose 
“Rename”. Rename the latent variables as Incentives, SES, and Motivation, using 
the context menu shown below.  

Then drag the corresponding indicators from the Indicators pane in the lower left 
and drop on their respective ellipses. In the display area, indicators will appear as 
yellow rectangles. By default, reflective arrows (ones from the latent variables to 
the indicator variables) will connect the latent variables to their indications, which 
may be dragged using the Select tool to desired positions. For greater placement 
control, select View > Show Grid and View > Snap Elements to the Grid. At this 
point, the model appears as shown below. 

 

Then use the Connection tool, highlighted in the figure below, to draw the arrows 
connecting the ellipses representing latent variables. When connected, the 
ellipses turn blue. 
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By default, indicators will appear to the left of the latent variable ellipses. Their 
location can be rotated by selecting a given latent variable with the Select tool 
(white arrow), then right-clicking and from the context menu that appears, 
choose Align > Indicators Top (or whatever position is wanted).  

Note also that right-clicking in the Projects pane in the upper left also allows the 
researcher to copy models or data from one project to another.  

Reflective vs. formative models 

As discussed above, models may be reflective or formative (or rarely, mixed). The 
diagram above is reflective because the indicators are shown as effects of the 
factors. Reflective models are the most common type. To create a formative 
model, common in PLS-SEM literature but not in covariance-based SEM literature, 
right-click each factor (ellipse) and from the context menu which appears, select 
"Change mode of measurement model".    

Switching between reflective and formative modes 

To switch modes from reflective to formative or vice versa, follow these steps: 
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1. Right-click on the existing reflective model (here, Motivation) in the Project 
Explorer pane and from the context menu which appears, select “Copy”.  

2. Right-click again and select “Paste”, giving a new model name such as 
MotivationF for the formative model.  

3. Optionally, right-click again  on Motivation and select “Rename”, renaming 
the original model as MotivationR for the reflective model.  

4. Double-click on the MotivationF model to bring up its graphic display, 
which is still reflectively modeled. 

5. Right-click on any indicator and from the context menu select “Change 
Mode of Measurement Model”.  All constructs will now be formatively 
modeled. 

The same process is used to switch from formative to reflective modeling.  It is 
also possible to have mixed models, with some factors modeled reflectively and 
some modeled formatively. In a mixed model, selecting “Change Mode of 
Measurement Model” will switch reflective arrows to formative and vice versa. 

Displaying/hiding the measurement model 

When the model is complex and/or the indicators are many, the right-clicking on 
any latent variable brings up a context menu with an option to "Hide Indicators of 
Selected Constructs" (see figure below). Toggling this menu choice between 
“Show” and  "Hide" causes the indicator variables shown as yellow rectangles, 
and their connecting arrows, to be displayed or hidden in the diagram, though 
they are still active for estimation purposes.  Similarly, right-clicking on an 
indicator brings up a context menus with the choices “Hide Indictors of All 
Constructs” or “Show Indicators of All Constructs”. 
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Saving the model 

With the desired project highlighted in the Project Explorer window, select File > 
Export project, to save the project file as a compressed .zip archive file, which 
archives in the zip file the graphical model file (Motivation.splsm) and the data file 
(jobsat.csv).  Other choices include exporting the path model to an image file (in 
.png, .bmp, .jpg, or .svg formats) or to the clipboard.  

The researcher may also highlight the desired model in the Project Explorer to 
export the model for use with R (ex., to save a file which in this example is called 
Motivation.splsm), as illustrated in the figure below. 
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Other formatting of the model, including icons for saving the model to .png or 
.svg graphic file formats, are available in the formatting sidebar shown below. 
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Model report output 

An output report is available after running the PLS algorithm as discussed above.  
The researcher should have accepted the “Open Full Report” default at the 
bottom of the opening screen for the PLS algorithm. 

 

Selecting Report > HTML (Print) Report causes output to be displayed, or use one 
of the other report options illustrated below. In addition, as illustrated above, the 
Calculate command causes the path coefficients to be entered on the graphical 
model.  

Graphical view of the report 

The figure below illustrates the graphical view of the report.  For this view, note 
that the “Motivation” model is highlighted in the Project Explorer window and  
the “Motivation.splsm” tab is selected in the display area. 

What is displayed in the graphical view depends on selections in the lower left of 
the figure below. The figure display I for path coefficients  connecting the latent 
variables (the inner model), weights assigned to the paths from the latent 
variables to the indicators (the outer model), and the R-square value displayed for 
endogenous latent variables. Highlighting in grey is wider for path with large 
relative values. 

As explained in the figure, the right-left arrow buttons in the lower left will 
change which coefficients are displayed. 

• Inner model: Cycle among path coefficients, total effect coefficients, and 
indirect effect coefficients 

• Outer Model: Cycle between path coefficients and path loadings 
• Constructs: Cycle among R-square, adjusted R-square, Cronbach’s alpha, 

composite reliability, and average variance extracted (AVE) 
• Highlighted paths: Cycle between absolute and relative values as the basis 

for the width of the gray highlight for paths. 
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Path coefficients hyperlink view of the report 

If the “PLS Algorithm” tab is selected instead of the “Motivation.splsm” tab, a  
display such as that below appears. In the figure below, the “Matrix” (table 
format) tab is selected and the default hyperlink to “Path Coefficients” output is 
also selected. The hyperlinks in the bottom half of the figure provide for display of 
many different coefficients, settings, and data specifications.  

 

In some cases, graphical output is available. For instance, clicking the “Path 
Coefficients” tab shown in the figure below displays the path coefficient matrix 
entries in bar graph form, as shown below. 
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Printed or web output 

Researchers may prefer all output be sent to an html web display from which it 
can easily be printed in entirety. The “Calculation Results” tab in the lower left of 
the screen contains options shown below for exporting the results to html (web 
display),  Excel, or R.  The “HTML” option will cause a prompt for all results to be 
saved in a single web page file (ex., file:///C:/Temp/Motivation.html-
files/Motivation.html).  Using Windows Explorer or some other program, the 
researcher can browse to the saved file, double-click it, and view the output. Html 
output may be very long but at the top will be a hyperlink table of contents linking 
to lower sections, which include both matrix (tabular) and graphical output. Most 
of the output discussed in output sections below was reproduced in this manner.   

Likewise, for this example, the “Excel” option prompts the user to save the file 
“Motivation.xls”. The R option prompts the user to save the file 
“Motivation.rData”.  The “Open” option flips the display to the  “Path coefficients 
hyperlink view” display discussed above. 
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Student/demo/free version 

In the student version, results still appear in the "Calculation Results" tab in the 
lower left but in the student version the user cannot export the report to HTML,   
Excel. or R views. Instead, click "Open" to go to the  “Path coefficients hyperlink 
view” display discussed above . Use the right (Next) and left (Previous) arrows for 
the output you want. For example:  

• Inner model: Path coefficients  
• Outer Model: Loadings  
• Constructs: R Square  

After making these settings, choose the option to export to the clipboard. Go to 
Word and select Home > Paste to place an image of the selected output as a 
Word document.   
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Checking for convergence 

While convergence is not often a problem in PLS-SEM, if the solution fails to 
converge then coefficients in output are unreliable. Therefore it is a good first 
step to check for convergence after running the PLS algorithm. This is done in a 
three-step process outlined in the figure below.  

1. Go to the “the  “Path coefficients hyperlink view” discussed above. 
2. Select the hyperlink  “Stop Criterion Changes” 
3. Note the matrix output in the upper portion of the display. If the number of 

listed iterations is below the maximum (default = 300), the solution 
converged. In the figure below, convergence was reached in six iterations. 
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OUTPUT 

Path coefficients for the inner model 

At the top of the HTML output are the path coefficients for the inner model (the 
arrows connecting latent variables). For the present simple example, the path 
from Incentives to Motivation has a coefficient of positive .512. The path from SES 
to Motivation has a coefficient of negative .244.  

 

Path coefficients are always standardized path coefficients. Given standardization, 
path weights therefore vary from -1 to +1. Weights closest to absolute 1 reflect 
the strongest paths. Weights closest to 0 reflect the weakest paths. Above, the 
path weight of 0.512 shows Incentives have a positive effect on Motivation. SES, 
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at -0.244, has a negative effect.  Since standardized data are involved, it can also 
be said based on these path coefficients that the absolute magnitude of the 
Incentives effect on Motivation is approximately twice that of SES.  

If the researcher switches to model view, it will be seen that these standardized 
path coefficients are the ones placed on the corresponding paths in the graphical 
model, shown below. 

 

If requested (see above), the R-square values are shown inside the blue ellipses 
for endogenous latent variables (factors). This is the most common effect size 
measure in path models, carrying an interpretation similar to that in multiple 
regression. In this example, only Motivation is an endogenous variable (one with 
incoming arrows).  For the endogenous variable Motivation, the R-square value is 
0.431, meaning that about 43% of the variance in Motivation is explained by the 
model (that is, jointly by SES and Incentives). See further discussion of R-square, 
see below. 

Direct, indirect, and total path coefficients 

Following the inner model path coefficients, HTML output lists the coefficients for 
direct  effects (the same as the corresponding standardized path coefficients just 
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discussed above), indirect effects (effects of one latent variable on an 
endogenous latent variable mediated through one or more additional latent 
variables), and total effects (the sum of direct and indirect effects). In the present 
simple model, there are no indirect effects and thus output is not displayed here. 
However, similar output for a model to which an arrow from SES to Incentives 
was added, thereby introducing the indirect path SES-> Incentives -> Motivation, 
is discussed and illustrated above.  

Outer model measurement loadings and weights 

The "outer model" is the measurement model consisting of the indicators and the 
paths connecting them to their respective factors. Both weights and loadings are 
output for both reflective and formative models 

• Outer model loadings are the focus in reflective models, representing the 
paths from a factor to its representative indicator variables. Outer loadings 
represent the absolute contribution of the indicator to the definition of its 
latent variable.   
 

• Outer model weights are the focus in formative models, representing the 
paths from the constituent indicator variables to the composite factor. 
Outer weights represent the relative contribution of the indicator to the 
definition of its corresponding latent variable (component or composite). 

Loadings 

Measurement loadings are the standardized path weights connecting the factors 
to the indicator variables. As data are standardized automatically in SmartPLS, the 
loadings vary from 0 to 1. The loadings should be significant. In general, the larger 
the loadings, the stronger and more reliable the measurement model.  Indicator 
reliability may be interpreted as the square of the measurement loading: thus, 
.708^2 = .50 reliability (Hair et al., 2014: 103). 

Outer model loadings appear in the graphical model (above). They may be 
considered a form of item reliability coefficients for reflective models: the closer 
the loadings are to 1.0, the more reliable that latent variable. By convention, for a 
well-fitting reflective model, path loadings should be above .70 (Henseler, Ringle, 
& Sarstedt, 2012: 269). Note that a loading of .70 is the level at which about half 
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the variance in the indicator is explained by its factor and is also the level at which 
explained variance must be greater than error variance. On the value 0.70 as a 
criterion for minimum measurement loadings, see Ringle, 2006: 11). 

Another rule of thumb is that an indicator with a measurement loading in the .40 
to .70 range should be dropped if dropping it improves composite reliability (Hair 
et al., 2014: 103). 

 

Weights 

Outer model “weights,” in contrast to loadings, do not vary from 0 to plus or 
minus 1. Weights vary from 0 to an absolute maximum lower than 1. The more 
the indicators for a latent variable, the lower the maximum and the lower the 
average outer model weight.   

It is possible for an indicator’s outer loading to be high and significant while its 
outer weight is not significant. If an indicator has a nonsignificant outer weight 
and its outer loading is not high (Hair et al., 2014: 129 suggest that  “not high” 
means not > .50) and it is not the only indicator for a theoretically important 
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dimension in a formative model, then the indicator is a candidate for being 
dropped from the model even if its loading is significant. As a corollary, even a 
path with a non-significant weight should be retained in the model if it is the only 
indicator for a theoretically significant dimension or has a high loading. 

Bootstrapped significance output 

The reader may have noticed that path coefficient output discussed thus far are 
not presented with the usual p-value significance levels. As path coefficients in 
PLS do not assume a normal, chi-square, or other known distribution, the usual 
asymptotic significance levels cannot be computed. Rather, bootstrapped 
significance coefficients must be employed. In SmartPLS this requires running the 
model after requesting “Bootstrapping” rather than “PLS Algorithm” from the 
“Compute” button menu. Bootstrapped significance is discussed in the 
subsequent section below. 

Assessing model fit: Overview 

There is no global goodness of fit measure available in PLS-SEM, unlike 
covariance-based SEM. Such global measures are based on how closely the 
model-implied covariance matrix approximates the observed covariance matrix. 
As such the focus is on reproducing the relationships among the variables. In 
contrast, goodness of fit measures in PLS-SEM, similar to OLS regression, 
emphasize how close the predicted values of the dependent variables are to the 
observed values. As such, the focus of PLS-SEM is on prediction. This is a central 
reason why it is often said that covariance-based SEM is appropriate for testing 
hypotheses and causal models, while PLS-SEM may be preferred when the 
research purpose is prediction. However, as discussed above, covariance-based 
SEM may return better predictions than PLS for large samples when its 
assumptions are met. 

While no global fit coefficient is available in PLS-SEM, immediately after the listing 
of the input data, the SmartPLS report displays various coefficients related to 
model fit ("model quality"), as shown below.   

Not all measures are appropriate for assessing all types of fit. There are three 
types of fit with which the researcher may be concerned.: 
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• Measurement fit for reflective models: This deals with fit of the 
measurement (outer) model when factors are modeled reflectively, which 
is the usual approach. 
 

• Measurement fit for formative models: This deals with fit of the 
measurement (outer) model when factors are modeled formatively. 
 

• Structural fit: This deals with fit of the structural (inner) model. 

Measurement fit for reflective models 

In a reflective model, arrows go from the factor to the indicator variables, 
signifying that a unidimensional underlying construct determines the values of the 
measured and representative indicator variables. Testing for convergent validity 
though such measures as composite reliability or Cronbach’s alpha is appropriate 
in reflective models but not in formative models. Goodness of fit measures 
appropriate for reflective measurement models, are those below. 

Composite reliability 

Composite reliability is a preferred alternative to Cronbach's alpha (see below) as 
a test of convergent validity in a reflective model. It may be preferred as a 
measure of reliability because Cronbach's alpha may over- or underestimate scale 
reliability, usually the latter. For this reason, composite reliability is preferred 
among researchers in PLS-based  research. Compared to Cronbach’s alpha, 
composite reliability may lead to higher estimates of true reliability. The 
acceptable cutoff for composite reliability is the same as for any measure of 
reliability, including Cronbach's alpha. Composite reliability varies from 0 to 1, 
with 1 being perfect estimated reliability. In a model adequate for exploratory 
purposes, composite reliabilities should be equal to or greater than .6 (Chin, 1998; 
Höck & Ringle, 2006: 15); equal to or greater than .70 for an adequate model for 
confirmatory purposes (Henseler, Ringle, &  Sarstedt, 2012: 269); and equal to or 
greater than .80 is considered good for confirmatory research (for ex., Daskalakis 
& Mantas, 2008: 288).  

Very high composite reliability (> .90) may indicate that the multiple indicators 
are minor wording variants of each other rather than being truly representative 
measures of the construct the factor represents. The researcher should consider if 
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very high composite reliability reflects this design problem, or if the indicators are 
representative of the desired dimension and simply correlate highly. For further 
discussion and the formula, see Hair et al. (2014: 101).   
 

 
 

Cronbach's alpha  
 
Cronbach’s alpha also addresses the question of whether the indicators for latent 
variables display convergent validity and hence display reliability. By convention, 
the same cutoffs apply: greater or equal to .80 for a good scale, .70 for an 
acceptable scale, and .60 for a scale for exploratory purposes. Note, however, 
Cronbach’s alpha is a conservative measure which tends to underestimate 
reliability. For these data, the Incentives and Motivation latent factors are 
measured at an acceptable level for confirmatory research. The SES latent factor 

Single User License. Do not copy or post.



PARTIAL LEAST SQUARES (PLS-SEM)          2016 Edition 
 

Copyright @c 2016 by G. David Garson and Statistical Associates Publishing Page 65 
 

falls short of this cut-off. As Cronbach's alpha is biased against short scales of two 
or three items as in the current example, this small discrepancy falling short of the 
cutoff for an adequate confirmatory scale would usually be ignored.  .  
 

 
 

Average variance extracted (AVE) 

AVE may be used as a test of both convergent and divergent validity. AVE reflects 
the average communality for each latent factor in a reflective model. In an 
adequate model, AVE should be greater than .5 (Chin, 1998; Höck & Ringle, 2006: 
15) as well as greater than the cross-loadings, which means factors should explain 
at least half the variance of their respective indicators.  AVE below .50 means 
error variance exceeds explained variance. For the seminal paper on AVE, see 
Fornell & Larcker (1981).  
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Communality 

SmartPLS 2 reported “communalities”. These coefficients were identical to the 
AVE coefficients and therefore are no longer reported in SmartPLS 3. In SmartPLS 
2 output where the rows are the factors and communality is a column, the 
communality coefficient measures the average percent of variance in the 
indicators for a row factor (e.g., Incent1 and Incent2) explained by that row factor 
(e.g., Incentives) and is a fourth test of convergent validity.  Communality may be 
interpreted as a measure of the reliability of row factor. Like any measure of 
reliability, the same cutoff criteria as described above apply.  
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The Fornell–Larcker discriminant validity criterion 
 
AVE may also be used to establish discriminant validity by the Fornell–Larcker 
criterion: for any latent variable, the square root of AVE should be higher than its 
correlation with any other latent variable. This means that for any latent variable, 
the variance shared with its block of indicators is greater than the variance it 
shares with any other latent variable. In SmartPLS output, in the Fornell-Larcker 
criterion table, the square root of AVE appears in the diagonal cells and 
correlations appear below it. Therefore, in absolute value terms, if the top 
number (which is the square root of AVE) in any factor column is higher than the 
numbers (correlations) below it, there is discriminant validity. Cross-loadings, 
discussed below, also are useful in establishing discriminant validity. 
 

 

Indicator reliability 

Outer (measurement) model path loadings and weights provide another set of 
criteria for evaluating the reliability of indicators in the model, whether reflective 
or formative. See previous discussion above. 
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The standardized root mean square residual (SRMR) 

SRMR is a measure of approximate fit of the researcher’s model. It measures the 
difference between the observed correlation matrix and the model-implied 
correlation matrix. Put another way, the SRMR reflects the average magnitude of 
such differences, with lower SRMR being better fit.  By convention, a model has 
good fit when SRMR is less than .08 (Hu & Bentler, 1998). Some use the more 
lenient cutoff of less than .10. For discussion in the context of partial least squares 
modeling, see Henseler, Dijkstra, et al. (2014). 

SRMR output illustrated below provides two versions: SRMR for composite factor  
models and SRMR for common factor models. SmartPLS documentation states, 
“Usually, when using PLS, the composite model SRMR is relevant. When all your 
measurement models are reflective and PLSc has been used, then, the common 
factor model SRMR is the relevant model fit assessment criterion” 
(http://www.smartpls.de/documentation/srmr).  

 

Cross-loadings 

In a good model, indicators load well on their intended factors  and cross-loadings 
with other factors they are not meant to measure should be markedly. Ideally, 
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there is simple factor structure, by rule of thumb taken to mean that intended 
loadings should be greater than .7 (some use .6) and cross-loadings should be 
under .3 (some use .4). The table below does not achieve simple factor structure 
due to cross-loadings at the .4 and .5 levels. Lack of simple factor structure 
diminishes the meaningfulness of factor labels (ex., the Incentives factor here still 
has substantial cross-loadings with the indicators for Motivation).  

 

Cross-loadings are an alternative to AVE as a method of assessing discriminant 
validity for reflective models. At a minimum, no indicator variable should have a 
higher correlation with another latent variable than with its own latent variable. If 
it does, the model is inappropriately specified.  

Heterotrait-Monotrait Ratio (HTMT) 

As noted in SmartPLS documentation, although examination of cross-loadings and 
use of the Fornell-Larcker criterion are accepted methods for assessing the 
discriminant validity of a PLS model, these methods have shortcomings. Henseler, 
Ringle & Sarstedt (2015) used simulation studies to demonstrate that lack of 
discriminant validity is better detected by the heterotrait-monotrait (HTMT) ratio 
they developed.  Guidelines for the use of HTMT coefficients are found in the 
above-cited article.   
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The HTMT ratio is the geometric mean of the heterotrait-heteromethod 
correlations (i.e., the correlations of indicators across constructs measuring 
different phenomena) divided by the average of the monotrait-heteromethod 
correlations (i.e., the correlations of indicators within the same construct). 
Averaging using the geometric mean is necessary because there are two 
monotrait-heteromethod submatrices (sets of within-construct correlations), for 
example, when there are two constructs.  See Henseler, Ringle, & Sarstedt (2015: 
121). 

In a well-fitting model, heterotrait correlations should be smaller than monotrait 
correlations, meaning that the HTMT ratio should be below 1.0, as they are in the 
example output below.  Henseler, Ringle, & Sarstedt (2015: 121) suggest that if 
the HTMT value is below 0.90, discriminant validity has been established between 
a given pair of  reflective constructs.  Gold et al. (2001) and Teo et al. (2008) also 
use the .90 cutoff, though Clark & Watson (1995) and Kline (2011) use the more 
stringent cutoff of .85. 

 

Factor scores 

The factor scores table lists each observation’s scores on each factor. For the 
standardized factor scores table, observations with scores higher than 1.96 may 
be considered outliers. The greater the proportion of outlier cases, the worse the 
measurement fit.  

Factor scores in standardized form are displayed by default in the "Latent Variable 
Scores" table, shown in partial format below. The correlation of these observation  
scores produces the "Latent Variable Correlations" table discussed further below. 
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The factor scores can also be analyzed to identify outlier cases (those with a 
greater absolute value than 1.96 are outliers at the .05 level, those greater than 
2.58 are outliers at the .01 level, etc.).  

 

Multicollinearity in reflective models 

In OLS regression, multicollinearity exists  when two or more independent 
variables are highly intercorrelated.  Multicollinearity in OLS regression inflates 
standard errors, makes significance tests of independent variables unreliable, and 
prevents the researcher from assessing the relative importance of one 
independent variable compared to another. A common rule of thumb is that 
problematic multicollinearity may exist when the variance inflation factor (VIF) 
coefficient is higher than 4.0 (some use the more lenient cutoff of 5.0). VIF is the 
inverse of the tolerance coefficient, for which multicollinearity is flagged when 
tolerance is less than .25 (some use the more lenient cutoff of .20).  

Formative models are a type of regression model, in which multiple indicators 
predict the value of the dependent variable, which is the latent variable value. 
The multicollinearity issue for formative models is discussed below.  

Single User License. Do not copy or post.



PARTIAL LEAST SQUARES (PLS-SEM)          2016 Edition 
 

Copyright @c 2016 by G. David Garson and Statistical Associates Publishing Page 72 
 

For reflective models, the latent variable is modeled as a single predictor of the 
values of each of the indicator variables, which are dependent variables. 
Therefore in a reflective measurement model, multicollinearity is not an issue, 
even though SmartPLS will output the VIF statistic for the outer (measurement) 
model, whether the model is reflective or formative. 

In either a reflective or a formative model, there is potentially multicollinearity at 
the structural level. That is, the latent variables which are modeled as causes of 
an endogenous latent variable may be multicollinear. Structural multicollinearity 
is a problem in either reflective or formative models for the same reason it is in 
OLS regression models. VIF coefficients for the structural model are printed by 
SmartPLS in the “Inner VIF Values” table shown further below. In a well-fitting 
model, the structural VIF coefficients should not be higher than 4.0 (some use the 
more lenient criterion of 5.0).  

Criterion validity 

Criterion validity is not part of SmartPLS output but may supplement it. If there is 
a measure of a construct used in the PLS model which is also used and widely 
accepted in the discipline, then the factor scores of that factor should correlate 
highly with the criterion construct used in the discipline. In the data collection 
phase, this requires that the researcher have administered the survey items for 
the criterion construct as well as for his/her own indicators of the constructs in 
the model. 

Goodness of fit (GoF) 

GoF is a measure combining effect size with convergent validity, suggested by 
Tenenhaus et al. (2005). However, use of GoF is now disparaged do to various 
statistical shortcomings (e.g., Hair et al., 2014: 185). Shortcomings include not 
being suitable for model validation (Henseler & Sarstedt, 2012: 565) and not 
handling misspecified models well (Hair et al., 2014: 78). GoF is not output by 
SmartPLS but must be computed manually. GoF is the geometric mean of average 
communality for the outer model and average R-square for the inner model. That 
is, goodness-of-fit equals the square root of communality times R-square. GoF will 
vary from 0 to 1. Henseler & Sarstedt (2012: 565) note that GoF may still be useful 
in assessing which datasets PLS-SEM explains better than others, with higher 
reflecting better explanation. 
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Redundancy  

The redundancy coefficient reported in SmartPLS 2 is no longer reported in 
SmartPLS 3 for the standard PLS algorithm. Redundancy reflects how well the 
response factor (and endogenous factors generally) is capable of predicting the 
variance in its indicator variables. The redundancy coefficient measures the 
percent of variance in the indicators for the dependent factor (Motivation) 
explained by the exogenous factors (SES and Incentives). This may modify the 
evaluation of R2 as a model fit measure.  .  

In SmartPLS 3, the blindfolding algorithm discussed below outputs cross-validated 
redundancy coefficients and cross-validated communality coefficients for 
constructs as well as indicators. 
 

Measurement fit for formative models 

In a formative measurement model (that portion dealing with the latent variables 
and their indicators), arrows in the model diagram go from the indicator variables 
to the factors. This signifies that a formatively modeled factor is a composite 
variable reflecting the indicators, which represent different dimensions of the 
factor. Because the indicators represent different dimensions, the researcher 
would not expect that the indicators would correlate highly, implying that 
composite reliability and Cronbach’s alpha might not be high. Likewise, the 
researcher would not expect that the composite factor would necessarily predict 
the values of the indicator variables well, implying that communality and 
redundancy might not be particularly high because any type of average of 
different dimensions will not predict any one dimension well. Rather, 
measurement fit for formative models is assessed by other means discussed 
below. 

Face validity 

The face meaning of the indicator variables should present a relevant and 
convincing set of all the dimensions of the construct for which the factor is 
labeled. 
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Path loading significance 

Measurement path loadings should be significant in a formative model with 
acceptable fit.  In principle every formative indicator should have been intended 
to represent one of the dimensions of the meaning of a factor in a comprehensive 
set of indicators for that factor and as such should not be dropped. That is, for 
formative models, measurement model path coefficients, which are the path 
loadings discussed above, should be significant (Henseler, Ringle, & Sarstedt, 
2012: 270).   

 However, in empirical practice, if the indicator’s path loading is not high (<.5) and 
is non-significant, the data do not support the contention that the indicator is 
relevant to the measurement of its factor and it may be dropped from the model 
(Cenfetelli & Bassellier, 2009). Some suggest any indicator with a low path 
loading, significant or not, might be considered for removal unless it seems 
relevant from a content validity viewpoint, meaning it is the only indicator of a 
theoretically important dimension of the construct represented by the factor  
(Hair et al., 2014: 130-131). 

Measurement weights 

Measurement weights, also illustrated and discussed above, are the path weights 
connecting the factors to the indicator variables. These should also be significant. 
The larger, the stronger the model. 

Cross-loadings 

Cross-loadings of the indicators on the latent variables, discussed above, apply in 
the same manner for formative as well as for reflective models. In a good 
formative model, indicators load on their intended composite factors and cross-
loadings with the composite scores of other factors they are not meant to 
measure should not be high (Klein & Rai, 2009). Ideally, there is simple factor 
structure, also discussed above. However, Henseler, Ringle, & Sarstedt (2015:131) 
note, based on simulation studies, “considering the poor performance of cross-
loadings in our study, its use in formative measurement models appears 
questionable. Against this background, future research should seek alternative 
means to consider formatively measured constructs when assessing discriminant 
validity.” 
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Factor scores 

The factor scores table, shown above, lists each observation’s scores on each 
factor. For the standardized factor scores table, cases with scores higher than 
1.96 may be considered outliers. The greater the proportion of outlier cases, the 
worse the measurement fit.  

Criterion validity 

Criterion validity, discussed above, also applies to formative measurement 
models. 

Convergent validity 

This model fit procedure, which is a special type of criterion validity, creates a 
reflective factor parallel to the formative factor.  In a well-fitting model, it is 
assumed that the formative factor should be correlated with and be able to 
predict values of the reflective factor, which is the criterion latent variable. 

For a given formative construct (ex., IncentivesF), create a corresponding 
reflective construct (ex., IncentivesR).  The indicators for the reflectively-modeled 
construct IncentivesR should be representative of the overall underlying construct 
(Incentives) and should be different from the indicators for its formative 
counterpart IncentivesF, whose indicators should each represent a dimension of 
Incentives. For reasons given earlier above, the indicators of IncentivesR should 
be above the cutoff for composite reliability (see above) or Cronbach’s alpha (see 
above), but this will not necessarily be true of the indicators for IncentivesF. 

Convergent validity is said to exist if the standardized path loading coefficient for 
the structural arrow from the formative factor IncentivesF to the reflective factor 
IncentivesR is high. Chin (1998) suggests a cutoff of .90 or at least .80.  This 
implies that the R-squared value for the reflective factor should be 0.81 or at least 
0.64. Note that this method of assessment requires that the indicators for the 
reflective construct be identified beforehand and included in the data gathering 
phase of the research project… 
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The standardized root mean square residual (SRMR) 

SRMR is an approximate measure of model goodness of fit which may be used for 
formative models. See discussion in a previous section above. 

Multicollinearity of the indicators in formative models 

A well-fitting formative measurement model should not display excessive 
multicollinearity of indicator variables in the set for any given formatively 
modeled factor according to Hair et al. (2014: 97). Since formative models 
embody a form of OLS regression, in which factors are linear combinations of the 
indicator variables as predictors, the usual regression test for multicollinearity 
problems may be applied.  

Multicollinearity may be a problem according to these authors if tolerance is less 
than 0.20 or if the variance inflation factor (VIF) exceeds 5. Some researchers 
used the more stringent cutoff values of .25 and 4, respectively. VIF is the inverse 
of tolerance and contains the same information (tolerance < 0.20 corresponds to 
VIF > 5), so only one of these tests is applied. Tolerance is 1.0 minus R-squared for 
the factor. This means that when R-squared for a formative factor is less than .80, 
multicollinearity is not a problem by the criteria or tolerance< .20 or VIF > 5.  
Standard error is doubled when VIF is 4.0 and tolerance is .25, corresponding to Rj 
= .87. Therefore VIF >= 4 is a more stringent but common alternative cutoff 
criterion.  

Hair et al. (2014: 125) suggest formative factors flagged for high multicollinearity 
by the tolerance or VIF tests must be dropped from the model or operationalized 
in some different manner. This author disagrees. While it is true that 
multicollinearity among the indicators for a formative factor inflates standard 
errors and makes assessment of the relative importance of the independent 
variables unreliable, nonetheless such high multicollinearity does not affect the 
efficiency of the regression estimates.  
 
For purposes of sheer prediction (as opposed to causal analysis), such high 
multicollinearity is not necessarily a problem in formative models in this author’s 
view. Rather, the concern of the researcher should be that the indicator items for 
a formative factor should include coverage of all the constituent dimensions of 
that factor. To take an example, for the factor “Philanthropy”, formative items 
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might be dollars given to church, dollars given to environmental causes, dollars 
given to civil rights causes, etc. If it were the case that respondents who 
contributed a certain amount for church tended to contribute the same amount 
for environmental or other forms of giving, the fact that very high correlations 
might result would not change the fact that the set of types of giving were the 
dimensions of “Philanthropy” and appropriate measurement would be by way of 
a linear combination of the constituent types of giving. Hair et al. are correct, 
however, that high multicollinearity undermines the researcher’s ability to make 
judgments about the relative importance of the indicators in giving meaning to 
the formative factor and if high multicollinearity is present, the researcher must 
avoid comparative analysis of indicator importance based on path weights. 
 
The “Outer VIF Values” table shown below contains VIF coefficients for the 
formative measurement model (for latent variables as predicted by their 
indicators). Note that the VIF value is the same for indicators in the same set (e.g., 
1.756 for Incent1 and Incent2 as predictors of Incentives in a formative model).  
 
The foregoing discussion applied to multicollinearity in the formative 
measurement model. The story is different for the inner (structural) portion of the 
model, where arrows connect latent variables. The VIF values in the “Inner VIF 
Values” table are the ones for endogenous latent variables (here, only Motivation 
is endogenous) as predicted from other latent variables for which the endogenous 
variable has incoming causal arrows in the model diagram.   

In either a reflective or a formative model, there is potentially multicollinearity at 
the structural level. Structural multicollinearity is a problem in either reflective or 
formative models for the same reason it is in OLS regression models (see above). 
VIF coefficients for the structural model are printed by SmartPLS in the “Inner VIF 
Values” table shown below. In a well-fitting model, the structural VIF coefficients 
should not be higher than 4.0 (some use the more lenient criterion of 5.0).  

SmartPLS outputs the VIF statistic as shown in the table below. Though here 
based on the reflectively modeled example, the output format is the same for 
formative models.  
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As noted earlier, the table above is for the reflectively modeled example. The 
format is the same for a formatively modeled example. In the output shown 
below for the equivalent formative model, the VIF values for the outer 
(measurement) model remain the same, rounding apart, but the VIF values for 
the inner (structural) model differ somewhat because formative modeling alters 
the values computed for the latent variables.  
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Goodness of fit for structural models 

Structural fit is examined only after measurement fit is shown to be acceptable. 
The structural or inner model consists of the factors and the arrows that connect 
one factor to another. The loadings of the direct paths connecting factors are 
standardized regression coefficients. Appropriate model fit criteria are discussed 
in sections below. 

Structural path coefficients 

Structural path coefficients (loadings), illustrated  in the path diagram after 
computation, are the path weights connecting the factors to each other. As data 
are standardized, path loadings vary from 0 to 1. These loadings should be 
significant (using bootstrapping). The larger, the stronger that path in the 
structural (inner) model.  A non-significant path may call for respecifying the 
model without that path, or for reasons of theoretical importance and discussion, 
the researcher may nonetheless wish to retain the path in the model. Note, 
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however, that in unusual instances, dropping a non-significant path may affect 
the significance of other paths in the model. 

R-square  

R-square, also called the coefficient of determination and previously discussed 
and illustrated above, is the overall effect size measure for the structural model, 
as in regression, indicating below that 43.1% of the variance in the Motivation 
variable is explained by the model. No R-square is shown for SES or Incentives as 
these are exogenous latent factors. Chin (1998: 323; see also Höck & Ringle, 2006: 
15) describes results above the cutoffs 0.67, 0.33 and 0.19 to be “substantial”, 
“moderate” and “weak” respectively. The R-square here would be considered to 
be of moderate strength or effect. However, what is “high” is relative to the field: 
a value of .25 might be considered “high” if the state of the art in the given 
subject and field had previously led to values even lower.  

Adjusted R-square (here, 0.430) is also output, not shown here but illustrated and  
discussed below.  
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Multicollinearity.  

As for any form of linear regression, multicollinearity may be present. If present, 
the researcher cannot use structural path coefficients to reliably assess the 
relative importance of predictor variables, including of predictor latent variables 
in the structural (inner) model. For a structural model, the predictor variables for 
an endogenous factor are other factors associated with incoming structural 
arrows (paths).  

To assess multicollinearity in the inner (structural) model, tolerance or VIF criteria 
may be applied, discussed and illustrated previously above.  Recall that tolerance 
equals 1.0 minus R2, and tolerance < .20 flags possible multicollinearity. This is 
equivalent to saying that R2 > .80 suggests a possible multicollinearity problem. 
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This corresponds to VIF greater than 5, though some use the more stringent 
cutoffs of .25 for tolerance and 4 for VIF.   

In any PLS-SEM model, there will be as many R2 values as there are endogenous 
variables. For the present example, there is only one endogenous variable 
(Motivation) and hence only one R2, which is well below the level where one 
would think multicollinearity might be  problem (see figure above).   

If multicollinearity is flagged as a possible problem, the researcher should 
consider if the highly correlated factors should be merged into a more general 
factor or if one is redundant and might be dropped.  Factors should be retained in 
the model if it is clear they measure different things (thus should not be merged) 
and are theoretically relevant (thus should not be dropped). However, though 
such a factor might be retained, it would still be true that multicollinearity would 
mean that the standard errors of the path coefficients would be inflated and 
judgments about the relative importance of the predictor factors, based on the 
size of standardized structural (path) coefficients, would not be reliable. 

Adjusted R2 

Note that adding predictors to a regression model tends to increase R2, even if the 
added predictors have only trivial correlation with the endogenous variable.  To 
penalize for such a bias, adjusted R2 may be used. Adjusted R2, which is output by 
SmartPLS as illustrated below, is  easily computed by the formula below: 

Adjusted R2 = 1 – { [(1 – R2)*(n-1)]/[n-k-1] } 

Where R2 is the unadjusted R2, n is sample size, and k is the number of predictor 
variables. In the PLS-SEM structural model, k is the number of exogenous factors 
used to predict a given endogenous factor. Note that the term “(n-1)” is used for 
samples, whereas n is used for populations (enumerations). Because of the small 
number of variables in the example model, adjusted R2 is very close to unadjusted 
R2 . 
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R-square change and f-square effect size of exogenous factors 

R-square change is the change in R2 when a causal (exogenous) factor is removed 
from the model.  To illustrate, the “Motivation” model (see above) was run three 
times:  

(1) with the SES and Incentives factors as causes of Motivation (the 
original model, described previously);  

(2) a model in which SES was dropped; and  
(3) a model in which Incentives was dropped.   

The R2 for model 1 was .4308, for Model 2 R2 was .3828, and for Model 3 R2 was 
.219. For Model 2 compared to the original model, R2 change was 0.043 and for 
Model 3 it was 0.2186.  The larger the R2 change, the more omitting that factor 
reduced the explained variance in Motivation. Specifically, dropping Incentives led 
to a greater drop in explained variance than did dropping SES. Incentives is thus 
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the more important explanatory variable of the two. As was also evident from the 
standardized structural paths (inner model loadings) shown above.  

 
 

The f-square effect size measure is another name for the R-square change effect.  
The f-square coefficient can be constructed equal to (R2

original – R2
omitted)/(1-

R2
original). The denominator in this equation is “Unexplained” in the table above. 

The f-square equation expresses how large a proportion of unexplained variance 
is accounted for by R2 change (Hair et al., 2014: 177). Again, Incentives has a 
larger effect on Motivation than does SES. 

The figure above is a manual calculation using Excel. However, SmartPLS outputs 
the f-square values for the researcher, as illustrated below. 
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Following Cohen (1988), .02 represents a “small” f2 effect size, .15 represents a 
“medium” effect, and .35 represents a “high” effect size. We can say that the 
effect of dropping Incentives from the model is high. 

Latent variable correlations output 

This table shows the correlation coefficients for the factor scores for the three 
factors in this example. Factor scores were discussed above. The coefficients in 
the “Latent Variable Correlations” table show that Incentives is tied to Motivation 
at a higher absolute level than is SES, and that the SES effect is negative.  In 
addition, this table shows the extent of correlation between the exogenous latent 
variables. The covariances table is redundant since data are standardized, making 
covariances equal to correlations. 
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Analyzing residuals 

Residuals may be analyzed to identify outliers in the data. Since residuals reflect 
the difference between observed and expected values, there is good model fit 
when residuals are low. Since data are standardized and assuming normal 
distribution of scores, residuals greater than absolute 1.96 may be considered 
outliers at the .05 level.  The presence of a significant number of outliers may flag 
the omission of one or more explanatory variables from the model, which may 
therefore require respecification. 

For convenience, the example model and residual score output is reproduced 
below.  An observation may be an outlier on an of the indicator variables in the 
outer (measurement) model or on any of the latent variables in the 
inner(structural) model.   
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Default SmartPLS output also includes tables of the covariances of residuals, 
shown below. In a well-fitting model, residuals are random normal and 
covariances should be low and non-significant. Significance testing requires 
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bootstrapped estimation in SmartPLS. Note also, a correlation may be trivial but 
nonetheless may be flagged as significant when sample size is large. Large 
residual covariances may flag the omission of important predictor variables from 
the model and hence the need for its respecification. 

 

Estimation with the consistent PLS (PLSc) algorithm 

Overview 

Dijkstra & Schermelleh-Engel (2014) proposed “consistent PLS” (PLSc) as an 
algorithm intended to produce consistent and asymptotically normal estimates of 
path loadings and of correlations among latent variables for reflectively-modeled 
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constructs. As such, PLSc is meant to overcome statistical inconsistency 
associated with the traditional PLS estimation algorithm. Built on Nunally’s (1978) 
correction for attenuation, PLSc is a correction to the traditional PLS algorithm 
(Dijkstra, 2010; Dijkstra and Henseler, 2015a, 2015b). 

Lack of “consistency” means that in traditional PLS, estimates do not approach 
true values as sample size increases. With PLSc, estimates do approach true 
values asymptotically. PLSc consistently estimates path coefficients, inter-
construct correlations, and indicator loadings in reflective models. Also, Dijkstra & 
Henseler (2015a: 299) found in simulation studies that PLSc was only slightly 
lower in power than full information maximum likelihood (FIML) SEM but had 
advantages in handling non-normally distributed data. 

Note that traditional PLS displays what Wold called “consistency at large”: the 
traditional PLS algorithm approaches true values as the number of reflective 
indicator variables for a given construct increases (Dijkstra & Henseler, 2015a: 
298, n.2). Also note that simulation studies of the statistical power of traditional 
PLS have tended to show it to be comparable to the power of traditional 
covariance-based structural equation modeling (Goodhue, Lewis, & Thompson, 
2006; Lu et al., 2011; Reinartz, Haenlein, & Henseler, 2009).  Nonetheless, PLS and 
PLSc estimates may differ substantially. 

The traditional PLS algorithm “tends to overestimate the loadings in absolute 
value, and to underestimate multiple and bivariate (absolute) correlations 
between the latent variables….The advantage of PLSc is that it is ‘well calibrated’, 
i.e. it will produce the true parameter values for the models we discuss when 
applied to the ‘population’” (Dijkstra & Schermelleh-Engel, 2015: 586). Traditional 
PLS also underestimates the R-squared value of endogenous latent variables  
(Dijkstra, 2010).  

Without correction, the more inconsistent the estimates, the more the error and 
the more the error, the more the probable attenuation of inter-construct 
correlations (Goodhue, Lewis, & Thompson, 2012; Dijkstra & Henseler, 2015a: 
298). PLSc is designed to increase power and to reduce Type II error in reflective 
models: the researcher is less likely to reject a true model. Inconsistency of 
estimate in traditional PLS also means that in the case where PLS would 
overestimate these parameters, Type I error is higher for PLS than for PLSc.  
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In their conclusion, these authors note that the PLSc approach is least problematic 
for non-recursive reflectively-modeled linear models. Put another way, PLSc is 
designed for fully connected common factor models in which all constructs are 
reflectively measured. Because indicator correlations are not informative for 
gauging reliability in composite and formative models, PLSc is not appropriate, 
nor is it recommended for mixed formative and reflective models (Dijkstra & 
Henseler, 2015a: 311). Traditional PLS remains the estimation algorithm of choice 
for formative models and mixed models, and in some cases may be preferred 
even for reflective models where the research goal is sheer prediction rather than 
causal analysis.    

PLSc output 

Consistent PLS produces the same output tables as discussed above for the 
traditional PLS output. The coefficients are different and may even be 
substantially different, however, because the PLSc algorithm adjusts for 
consistency of estimate. Though the coefficients differ, interpretation of output is 
the same as discussed above for traditional PLS except that for a reflective 
common factor model, PLS estimates an approximation whereas PLSc yields more 
consistent estimates (e.g., as consistent as SEM in LISREL).  

As illustration, below are tables for path coefficients from traditional PLS and 
from PLSc for the same simple model as discussed previously in the traditional PLS 
section.  
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Estimation with PLS bootstrapping  

Overview 

Bootstrapping uses resampling methods to compute the significance of PLS 
coefficients. It may be used with the traditional PLS estimation algorithm or with 
the consistent PLS (PLSc) algorithm, though this section focuses on the former. If 
the researcher wants output of significance levels, a bootstrapping option must 
be selected. Bootstrapped significance, though common in many statistical 
settings of which PLS is only one context, is not the same as the usual asymptotic 
tests of significance familiar to users of regression and other random-normal data 
applications. 

In traditional asymptotic significance tests. a probability level of .05 means there 
is one chance in 20 that a result as strong or stronger in absolute terms will occur 
due to the chance of sampling (taking another sample from the population), 
assuming random sampling from a normal distribution. If the data are an 
enumeration rather than a sample, significance is moot as all effects, however 
small, are real and there is no possibility of “another sample”. If the sample is 
non-random, the computed significance level is in error to an unknown degree. A 
significant can be generalized to the population when random normal 
assumptions are met. 

Bootstrapped significance is often used when data cannot be assumed to be 
normal. The distributional properties of PLS estimates are not known for the 
population and thus bootstrapping is appropriate. As typically computed, 
bootstrapping takes a large number of “leave one out” samples from the 
researcher’s data. This enables computation of a given coefficient of interest (ex., 
a correlation) for a large number of such samples, allowing a standard deviation 
to be computed. Counting standard deviations from the observed coefficient to 0 
yields a significance level. For bootstrapped significance, a probability level of .05 
means there is one chance in 20 that a result as strong or stronger in absolute 
terms will occur due to chance of sampling (taking another sample from the data). 
Though bootstrapping will handle any distribution, the researcher cannot 
generalize to the population unless the sample is randomly drawn from the 
population.  Otherwise the researcher can generalize only to the data at hand. 
That is, bootstrapped estimates address the problem of non-normal distribution 
of data but do not address the problem of non-random sampling.  
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Running the PLS bootstrapping algorithm 

To obtain traditonal PLS estimates with bootstrapped significance, select 
“Bootstrapping” after selecting the desired model (here, the same ‘Motivation’ 
model is selected as in the PLS example above) and clicking on the “Calculate” 
button. This brings up the dialog shown below. 

 

While the researcher may wish to accept all bootstrapping defaults by clicking on 
the “Start Calculation” button in the lower right, various options may be adjusted. 
These options fall under the three tabs of the dialog above: Setup, Partial Least 
Squares, and Weighting. (To skip discussion of bootstrapping option and proceed 
directly to discussion of bootstrapping output, click here.) 

The seven options for the “Setup” tab are shown in the enlarged figure below, 
with explanations under the figure (and explained on the right-hand side of the 
dialog itself). 
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1. Subsamples: The default is 500 leave-one-out samples, with replacement. 
This default is suitable for exploratory purposes. For confirmatory 
purposes, a larger number (e.g., 5000) is recommended, though this will 
take more computational time. 
 

2. Do Parallel Processing: By default, subsamples are computed using multiple 
processing cores if available on the researcher’s computer, thereby 
reducing computation time. 
 

3. Sign Changes: Sign changes have to do with change in the sign of a 
coefficient (e.g., a path in the outer model) in a given subsample (iteration)  
compared to the sign when the entire sample is used.  

a) The default is “No Sign Changes”, meaning that sign changes in the 
resamples are accepted as is, resulting in larger standard errors.  

b) “Construct Level Changes” makes signs consistent with those in the 
entire sample if in any group of coefficients (e.g., the outer model 
group of coefficients for a given construct) but only if a majority of 
signs in the group are reversed in the given subsample.   
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c) “Individual Changes” makes all signs consistent with those in the 
entire  sample. 
 

4. Amount of Results: “Basic Bootstrapping” computes bootstrapped 
significance for path coefficients, indirect effects, total effects, outer 
loadings, and outer weights. “Complete Bootstrapping”, which is the 
default, also computes bootstrapped significance for R-square, average 
variance extracted (AVE), Cronbach’s alpha, and the heterotrait-monotrait 
ratio (HTMT). Complete bootstrapping takes more computational time. 
  

5. Confidence Interval Method: Bootstrapping has several variants, of which 
SmartPLS offers five: 
 

a) Bias-Corrected and Accelerated (BCa) Bootstrap: This is the default 
and is a stable method producing relatively narrow confidence 
intervals and which is not intensive in computation time. BCa adjusts 
for bias and skewness in the distribution of bootstrap estimates. 

b) Percentile Bootstrap: Confidence intervals are constructed using 
percentiles of the bootstrap distribution of estimates of a given 
coefficient. Not recommended when the distribution is 
asymmetrical, the median and mean diverge, or when sample size is 
small (e.g., < 50). 

c) Studentized Bootstrap: Confidence intervals are constructed using 
quantiles from the bootstrap distribution of Student’s t-test, which is 
considered superior to the percentile bootstrap method.  

d) Davison Hinkley's Double Bootstrap: Each resample is resampled 
again, requiring extra computational time. See Davison & Hinkley 
(1997). 

e) Shi's Double Bootstrap:  See Letson & McCullough (1998) for a Monte 
Carlo simulation study finding Shi’s method to converge quickly and 
to produce confidence intervals with better coverage (likelihood true 
values are within the limits) than single bootstrap methods. 
Differences In confidence limits from single bootstrap methods are 
modest. 

6. Test Type: The researcher may determine if one-sided or two=sided 
significance tests are desired. The usual two-tailed test is the default. One-
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sided would be selected only if the researcher could be certain that one 
side of the distribution (e.g., negative coefficients) were impossible. 
 

7. Significance Level: The usual .05 cutoff for a coefficient being significantly 
different from 0 is the default, but the researcher may reset this (e.g., to 
.10 for exploratory research). 

The “Partial Least Squares” tab provides four additional optional settings for 
bootstrapping, shown in the figure below. 

 

1. Weighting Scheme: The path weighting method., which is the default,  
maximizes the R-square value of endogenous latent variables in the model. 
Using the centroid and factor methods will generally make little difference. 
The centroid method should not be used when there are second-order 
latent variables (latent variables whose indicators are themselves latent 
variables) in the model.  
 

2. Maximum Iterations: By default, the bootstrap algorithm will take up to 300 
iterations in an attempt to achieve convergence as defined by the stop 
criterion. The researcher may override this default, typically to increase 
iterations when convergence is not achieved.. 
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3. Stop Criterion (10^-X): Convergence I considered achieved when the change 
in coefficients is less than the stop criterion, which by default is 10-7 , which 
is .0000001. The researcher may adjust the stop criterion. 
 

4. Initial Weights: By default, initial outer model weights (path weights 
connecting a latent variable and its indicator variables) are set to +1.  This 
default can be overridden by checking the “Lohmöller Settings” checkbox, 
which sets the initial value to +1 for all indicators except the last, which is 
set to -1. While the Lohmöller method leads to faster convergence, the 
signs may be counterintuitive. There is also an option for user-defined 
initial weights set by the researcher (click “Individual Settings”). 

  

The “Weighting” tab allows the researcher to enter the name of a weighting 
variable in the current dataset. This causes the program to compute a weighted 
PLS solution.  For the example, there is no weighting variable, which is the default. 

 

Typical uses of a weighting variable are: 
 

1. To adjust for oversampling of some observations compared to others (e.g., 
the sample may have oversampled Hispanic-Americans by a factor of two). 

2. Using weighted least squares (WLS) weights to adjust for differences in 
point variance of the observations on a dependent variable, or for 
differences  in some other criterion of relative observation importance. 

3. Following finite mixture PLS (discussed below), probabilities of group 
membership in a given group may be used to obtain estimates for a given 
group, based on all observations.  
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PLS bootstrap output 

After running the bootstrapping option as described above (using the default 
settings for the example model, “Motivation”, values in the path diagram are 
values for t-tests of significance. View this diagram by being in the 
“Motivation.splsm” tab after calculation. Be sure “Calculation Results” on the left 
is set to “Inner Model T-Values” and “Outer Model T Values”, as shown in the 
figure below.   

All t values above 1.96 are significant at the .05 level, which is the case for all t 
values for the example model. “Calculation Results” may also be set to “P Values” 
to get probability levels, which are all 0.000 for this example, also meaning all 
paths are significant at better than the .001 probability level.  

Note that because of random processes built into the bootstrapping algorithm, 
the exact t values reported will vary a little with each run of bootstrapping. 
Changing the requested number of samples will change the t values only 
modestly.   
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These values can be seen in output, either interactively under the “Bootstrapping 
(Run #1)” tab or as part of the full report. Here we use the latter, as sent to HTML 
format as described earlier above. At the top of the HTML report is output for the 
“Path Coefficients”, by which is meant the paths in the inner model (arrows 
connecting the latent variables). This is shown in the figure immediately below 
(red highlight added): 

 

In the output above, the “T Statistics” column contains the same value of t as 
appeared in the diagram above. The “P Values” column shows the corresponding 
significance (probability) levels for the row path. Confidence intervals appear in a 
separate table immediately below. Some 2.5% of cases lie below the lower 
confidence limit and another 2.5% (100-97.5) lie above the upper confidence 
limit, making these the 95% confidence limits.  

“Bias corrected” confidence limits are shown in a third table in the set.  The 
formula for this bias correction is found in Sarstedt, Henseler, & Ringle (2011: 
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205). For further discussion of bootstrapped confidence limits, see Efron & 
Tibshirani (1998), who state that bias-corrected confidence intervals yield more 
accurate values. Interpretation of bias-corrected confidence intervals is the same 
as for any other confidence interval: If 0 is not within the confidence limits, the 
coefficient is significant. Bias correction has been used particularly in PLS tetrad 
analysis (see below) to assess path significance (Gudergan, Ringle, Wende, & Will, 
2008). 

T-values, P-values, confidence limits, and bias-corrected confidence limits are also 
output for indirect and total effects, but  are not shown here as a the simple 
example model has no indirect effects and thus total effects are the same as 
direct effects above. 

Likewise, T-values, P-values, and confidence limits are output for the outer 
(measurement) model, under the heading “Outer Loadings”, as shown below. A 
bias-corrected confidence limit table is also output, not shown here. For the 
example model, all outer model loadings are highly significant also.  

The same three confidence/significance tables are also produced for “Outer 
Weights”, not shown here. 
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T-values, P-values, confidence limits, and bias-corrected confidence limits are also 
output for model “quality criteria”, such as R-square, as shown below, 
demonstrating the R-square value to be significant for the example model. Similar 
sets of tables are output for adjusted R-square, f-square, average variance 
extracted (AVE), composite reliability, Cronbach’s alpha, the heterotrait-
monotrait ratio (HTMT), the SRMR for the common factor model, and the SRMR 
for the composite model, all not shown here. These measures were all discussed 
previously in the traditional PLS estimation algorithm sections on assessing model 
fit.  
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Bootstrap output also includes histograms showing the dispersion of estimated 
values across iterations. For instance, the histogram below shows the distribution 
of path loading coefficients for the model’s path from SES to Motivation. Other 
histograms are output for indirect effects and total effects. This is a graphical way 
of displaying the same information as is contained in confidence intervals. There 
are no histograms for the outer (measurement) model. 

Single User License. Do not copy or post.



PARTIAL LEAST SQUARES (PLS-SEM)          2016 Edition 
 

Copyright @c 2016 by G. David Garson and Statistical Associates Publishing Page 103 
 

 

Dropping indicators  

It may be asked whether indicators with non-significant paths should be dropped 
from the model.  

For reflective models, indicators are representative of the factor and in principle, 
dropping one does not change the meaning of the factor. Assuming enough other 
representative indicator variables exist for the given factor, dropping one whose 
path is non-significant is appropriate. When an indicator is dropped, all 
coefficients in the model will change, sometimes crossing the border between 
significance and non-significance. For this reason, as for coefficients in other 
statistical procedures, it is recommended to drop one at a time, re-running the 
model each time. 

For formative models, however, each indicator measures one of the set of 
dimensions of which the factor is composed. Dropping such an indicator changes 
the meaning of the factor because that dimension of meaning is omitted. 
Therefore, unless there are redundant indicator items for the dimension in 
question, indicators usually are not dropped from formative models even if non-
significant 
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Estimation with consistent PLS bootstrapping 

Overview 

Consistent PLS (PLSc) was discussed above and, also above, bootstrapping using 
the default PLS algorithm was discussed and pros and cons presented. The 
“consistent PLS bootstrapping” method combines the two, using bootstrapping 
methods but in conjunction with the PLSc algorithm. As a form of bootstrapping, 
PLSc bootstrapping is a nonparametric method which may be used to derive 
standard errors and significance tests for coefficients in the partial least squares 
model. 

For the example in this section we use MotivationR.splsm, which is the reflexively 
modeled version of the Motivation model. This was created in a previous section 
above. 

Running the PLSc bootstrapping algorithm 

After selecting Calculate > Consistent PLS Bootstrapping from the SmartPLS menu, 
a dialog appears with five tabs: 

1. Setup 
2. Bootstrapping 
3. Consistent Partial Least Squares 
4. Partial Least Squares 
5. Weighting 
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Under each tab, the user may accept or reset various default parameters. These 
are discussed below in turn. 

SETUP 

Unlike regular PLS bootstrapping (recall prior figure above), consistent PLS 
bootstrapping does not require setting any parameters under this tab. 
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BOOTSTRAPPING 

The default settings for the “Bootstrapping” tab in SmartPLS are shown in the 
figure below. 

 

In the example described below in this section, we accepted the defaults as 
shown. Comments on the options are presented next: 

• Subsamples: Bootstrapping requires repeated sampling from the given 
data. The default 500 samples is for exploratory purposes, keeping 
computation time minimal. For final analysis, however, a much larger 
number (e.g., 5,000) is recommended for stability of estimates. 
 

• Parallel Processing: If this is checked (the default) and the researcher’s 
computer has multiple processors, they will be used to speed computation 
time. If the computer lacks multiple processors, checking this box has no 
effect. 
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• Sign Changes: Options are the same as discussed above for ordinary PLS 
bootstrapping. Sign changes refer to the sign of a coefficient flipping from 
positive to negative, or vice versa, for a particular sample compared to the 
mode for all samples. The default is “No Sign Changes”, meaning that sign 
changes in the resamples are accepted as is, resulting in larger standard 
errors. It is possible to force signs to conform to other resample results. 
 

• Amount of Results: Basic Bootstrapping” computes bootstrapped 
significance for path coefficients, indirect effects, total effects, outer 
loadings, and outer weights. “Complete Bootstrapping”, which is the 
default, also computes bootstrapped significance for R-square, average 
variance extracted (AVE), Cronbach’s alpha, and the heterotrait-monotrait 
ratio (HTMT). Complete bootstrapping takes more computational time. 
 

• Confidence Interval Method: Bias-corrected and accelerated (BCa) 
bootstrapping is the default method of computing confidence intervals. It is 
considered to be a stable method producing relatively narrow confidence 
intervals and is not intensive in computation time.  The BCa method and 
alternatives were discussed above in the section on ordinary PLS 
bootstrapping. 
 

• Test Type: As in most social research, two-tailed significance tests are 
specified as the default. One-sided would be selected only if the researcher 
could be certain that one side of the distribution (e.g., negative 
coefficients) were impossible. 
 

• Significance level:  Also following common social science practice, the usual 
.05 cutoff for a coefficient being significantly different from 0 is the default. 
This may be reset by the researcher. 

CONSISTENT PARTIAL LEAST SQUARES 

This tab (not shown) has a single option. The researcher can check a box labeled 
“Connect al LVs for Initial Calculation”.  The default is not to check this box, 
meaning that the connections involving the latent variables (LVs) in the model are 
accepted as drawn by the researcher. Dijkstra and Henseler (2012) have 
suggested that more stable results may follow if all latent variables are connected 
in the model. The default (no check) option, however, preserves the researcher’s 
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original model and test coefficients refer to this model, not a more saturated 
model. 

PARTIAL LEAST SQUARES 

 

In the example described below, we accepted the defaults as shown. Comments 
on the options are presented next: 

Weighting Scheme: Initial weights were discussed earlier above . The “Path” 
weighting method is recommended because it is thought to generate the highest 
R2 values. Differences among methods are sufficiently small that the choice of 
weighting scheme typically does not affect substantive interpretations of results. 

Maximum Iterations: In the initial, exploratory phase of research, computational 
time is minimized by the default 300 iterations. Later, in the confirmatory stage of 
research, a much higher number is recommended (e.g., 1,000 or even 5,000).  

Stop Criterion: The number entered here (by default 10-7) specifies how small the 
change in outer weights must be on a successive iteration to judge that iterations 
should stop. In the rare event that convergence is a problem, a slightly larger stop 
criterion might be used (e.g., 10-5). 

Initial Weights: Initial outer weights by default are set to +1. If the “Use Lohmöller 
Settings” box is checked, however, all initial weights are set to +1 except the last, 
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which is set to -1. While the Lohmöller method speeds convergence, it is not 
generally adopted as it may lead to counter-intuitive signs for path coefficients.  

WEIGHTING TAB 

This tab (not shown) allows the user to specify a variable in the current dataset 
(the “weighting vector”) whose values are used to weight observations. There are 
three common weighting purposes. 

1. Weights may compensate for differential sampling of the population (e.g., 
oversampling of a subgroup of special interest). 
 

2. Weights may reflect probabilities of membership in various groups 
identified by finite mixture analysis (FIMIX), discussed below. 
 

3. Weights may compensate for differential reliability of some observations 
(e.g., WLS weights may be used. See the separate Statistical Associates 
“Blue Book” on “Weighted Least Squares”). 

Consistent PLS bootstrap output 

For the output below, the defaults for all options described above were accepted.  

Run the analysis by clicking the “Start Calculation” button in the lower-right 
corner of the Consistent PLS shown above.  

After calculation is completed, values in the path diagram are values for t-tests of 
significance. View this diagram by being in the “MotivationR.splsm” tab after 
calculation. Be sure “Calculation Results” on the left is set to “Inner Model T-
Values” and “Outer Model T Values”, as shown highlighted in the lower left of the 
figure below.   
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All t values above 1.96 are significant at the .05 level, which again is the case for 
all t values in the example model. “Calculation Results” may also be set to “P 
Values” to get probability levels, which are all 0.000 for this example, as in 
ordinary PLS bootstrapping. 

Note that because of random processes built into the bootstrapping algorithm, 
the exact t values reported will vary a little with each run of bootstrapping. 
Changing the requested number of samples will change the t values only 
modestly.   

These values can be seen in output, either interactively under the “Bootstrapping 
(c) (Run #1)” tab shown in the figure above, or as part of the full report. Here we 
use the latter. Click the “Export to Web” button to send the full report in HTML 
format to a file location of choice. It will also appear in a web browser. 

At the top of the HTML report is output for the “Path Coefficients”, which here 
are the paths in the inner model (arrows connecting the latent variables). This is 
shown in the figure immediately below (red highlight added). While the 
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coefficients differ from those produced by ordinary PLS bootstrapping (see 
above), substantive inferences about path significance or lack thereof are usually 
the same. Note also that if the reader is following along, random processes 
inherent in bootstrapping will yield coefficients which differ from those in the 
figure below. 

 

In the figure above, the “T Statistics” column contains the same value of t as 
appeared in corresponding diagram above. The “P Values” column shows the 
corresponding significance (probability) levels for the path for the given row (e.g., 
the first row is the path from Incentives to Motivation). Confidence intervals 
appear in a separate table immediately below. Coefficients of some 2.5% of cases 
lie below the lower confidence limit and another 2.5% lie above the upper limit, 
making these the 95% confidence limits.  

The “Bias corrected” confidence limits shown in the third table in the set are 
discussed above in the previous section on ordinary PLS bootstrap estimates. T-
values, P-values, confidence limits, and bias-corrected confidence limits are also 
output for indirect and total effects, but  are not shown here as a the simple 
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example model has no indirect effects and thus total effects are the same as 
direct effects above. 

In a similar manner, T-values, P-values, and confidence limits are output for the 
outer (measurement) model, under the heading “Outer Loadings”, as shown 
below. A bias-corrected confidence limit table is also output, not shown here. For 
the example model using consistent PLS bootstrapping, all outer model loadings 
are highly significant also. The same three confidence/significance tables are also 
produced for “Outer Weights”, not shown here. 

 

T-values, P-values, confidence limits, and bias-corrected confidence limits are also 
output for model “quality criteria”, such as R-square, as shown below, 
demonstrating the R-square value to be significant for the example model. Similar 
sets of tables are output for adjusted R-square, f-square, average variance 
extracted (AVE), composite reliability, Cronbach’s alpha, the heterotrait-
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monotrait ratio (HTMT), the SRMR for the common factor model, and the SRMR 
for the composite model, all not shown here. These measures were all discussed 
previously in the traditional PLS estimation algorithm sections on assessing model 
fit.  

 

PLSc bootstrap output also includes histograms showing the dispersion of 
estimated values across iterations. For instance, the histogram below shows the 
distribution of path loading coefficients for the model’s paths from Incentives to 
Motivation, and from SES to Motivation. Other histograms are output for indirect 
effects and total effects. This is a graphical way of displaying the same 
information as is contained in confidence intervals. There are no histograms for 
the outer (measurement) model. 
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Dropping indicators  

Whether indicators with non-significant paths by PLSc bootstrapping should be 
dropped from the model is a question involving the same considerations as 
previously discussed above for ordinary PLS bootstrapping. 

Estimation with blindfolding 

Overview 

Blindfolding utilizes a cross-validation strategy and reports cross validated 
communality and cross validated redundancy for constructs as well as indicators.  
SmartPLS documentation calls these “predictive accuracy” criteria. Unlike 
bootstrapping, no standard errors or significance coefficients are calculated. 
Rather, the purpose is to calculate cross-validated measures of model predictive 
accuracy (reliability), of which there are four: 

• Construct cross-validated redundancy 
• Construct cross-validated communality 
• Indicator cross-validated redundancy 
• Indicator cross-validated communality 

The cross-validated redundancy for a reflectively modeled endogenous factor is 
the Stone-Gleisser Q2 value, a model fit measure discussed further below ((Stone, 
1974; Geisser, 1974). As shown in the user dialog for the blindfolding choice 
shown below, the researcher must set a distance value called the “omission 
distance“ (d). The blindfolding algorithm omits every dth data point for the 
indicators for the selected endogenous factor (below, every 7th data point for the 
indictors for Motivation) and does d iterations. Estimates from the d iterations are 
combined to compute a total estimate of the cross-validated redundancy, which is 
Q2. There is a Q2 value for each reflectively-modeled endogenous factor in the 
model. A Q2 value above 0 indicates that the model is relevant to predicting that 
factor.  For more regarding computation of Q2, see Hair et al. (2014: 178-197).   

For the example in this section we use MotivationR.splsm, which is the reflexively 
modeled version of the Motivation model. This was created in a previous section 
above. 
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Warning: The blindfolding procedure should only be applied to reflective models, 
as in the example below. 

ONLINE HELP 

Blindfolding is a sample re-use technique that starts with the first data point and 
omits every dth data point in the endogenous construct’s indicators. Then, the 
procedure estimates the PLS path model parameters by using the remaining data 
points. The omitted data points are considered missing values and treated 
accordingly when running the PLS-SEM algorithm (e.g., by using mean value 
replacement). The resulting estimates are then used to predict the omitted data 
points. The difference between the true (i.e., omitted) data points and the 
predicted ones is then used as input for the Q² measure. 

Blindfolding is an iterative process. In the next iteration, the algorithm starts with 
the second data point and omits every dth data point and continues as described 
before. After d iterations, every data point has been omitted and the model re-
estimated. 

When PLS-SEM exhibits predictive relevance, it accurately predicts the data points 
of indicators in reflective measurement models of endogenous constructs and 
endogenous single-item constructs (the procedure does not apply for formative 
constructs). In the structural model, a Q² value larger than zero for a certain 
reflective endogenous latent variable indicate the path model’s predictive 
relevance for this particular construct. 

 

END ONLINE HELP 

Running the blindfolding algorithm 

After selecting Calculate > Blindfolding from the SmartPLS menu, a dialog appears 
with four tabs. These are discussed in turn below. 

1. Setup 
2. Partial Least Squares 
3. Weighting 
4. Blindfolding 

SETUP 
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The “Setup” tab (not shown) has a single parameter, “omission distance”. The 
user may reset the default value of 7 to some other value between 5 and 12. The 
omission distance parameter, d, specifies how far the algorithm reaches in the 
process of data point omission. The default d = 7 means that every 7th data point 
is omitted in a given blindfolding iteration (round), of which there will be 7, so 
that all data points are temporarily omitted for purposes of predicting their 
values. The number of blindfolding rounds is always d. 

Warning: In order to predict all observations, the blindfolding algorithm requires 
that n/d is not an integer, where n is the number of observations and d is the 
omission distance.  The exercise dataset has 932 observations and, not being 
evenly divisible by 7, the default d=7 is acceptable. 

PARTIAL LEAST SQUARES 

The “Partial Least Squares” tab is identical to that discussed in the section on 
consistent PLS bootstrapping and the same considerations apply. The reader is 
referred to this section above.  The blindfolding example here accepts the default 
settings. 

WEIGHTING 

The “Weighting” tab is identical to that discussed in the section on consistent PLS 
bootstrapping and the same considerations apply. The reader is referred to this 
section above. The blindfolding example here accepts the default settings. In this 
blindfolding example, no weights are used. 

BLINDFOLDING 

The “Blindfolding” tab appears if the “Read More!” button is pressed. Basic 
information about the blindfolding procedure is presented. This tab has no 
settings. 

Output unique to blindfolding estimation 

Predictive relevance (Q2) 

Q2  is also known as Stone-Geisser Q2,  after its authors (Stone, 1974; Geisser, 
1974; for PLS context, see also Chin, 1998; Ruiz et al., 2009: 546). Applicable only 
to reflectively modeled endogenous factors, Q2 greater than 0 means that the 
PLS-SEM model is predictive of the given endogenous variable under scrutiny. By 
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the same token, a Q2  with a 0 or negative value indicates the model is irrelevant 
to prediction of the given endogenous factor. 

As mentioned above, there are four sets of cross-validation output: 

• Construct cross-validated redundancy 
• Construct cross-validated communality 
• Indicator cross-validated redundancy 
• Indicator cross-validated communality 

The “Construct” output relates to the inner model connecting the latent variables. 
The “Indicator” output relates to the outer model connecting the  latent 
constructs to their indicator variables. The Q2 statistic is found in the 
“redundancy” output. The “communality” output is an alternative measure of 
predictive relevance, discussed below. 

Construct cross-validated redundancy 

Construct cross-validated redundancy will usually be the blindfolding output of 
greatest interest since it speaks to model fit of the PLS latent variable model. In 
SmartPLS output, Stone-Geisser Q2   appears as “1 – SSE/SSO” in the ”Total” table  
of the “Construct Crossvalidated Redundancy” section, as in the figure below.  For 
this example, Q2  is approximately 0.35. Following Cohen (1988), .02 represents a 
“small” effect size, .15 represents a “medium” effect size, and .35 represents a 
“high” effect size.  On this basis, we can say that the model is has a high degree of 
predictive relevance with regard to the endogenous factor Motivation.  
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Other cross-validation tables 
 
The construct cross-validated communality, indicator cross-validated redundancy, 
and indicator cross-validated communality tables are constructed in the same 
way. In each case a Q2 value is calculated as 1 minus the sum of squared error 
divided by the sum of squares of observed omitted values  The cutoffs for 
interpretation of small, medium, and high effect size remain the same as 
discussed above. 
 
It will be noted that whether one is discussing constructs in the inner model or 
indicators in the outer model, there are two versions of Q2: redundancy and 
communality. The following comparison observations apply: 
 

• Redundancy is only calculated for endogenous variables in the model (here, 
Motivation). Communality is calculate for all constructs and indicators in 
the model. 
 

• Communality coefficients run higher than redundancy coefficients 
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• The communality calculation is done without knowledge of the path model, 
based only on construct (latent variable) scores.  
 

• The redundancy calculation of Q2 is more consistent with the PLS approach, 
which focuses on paths involving the endogenous variables. For this reason 
it is preferred by Hair et al. (2014: 183).  

 

For the example data, the inner model has is has a high degree of predictive 
relevance with regard to the endogenous factor Motivation by either the 
redundancy or communality method. 
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The tables above for the outer model connecting latent constructs to their 
indicators shows that here also, outer model has is has a high degree of predictive 
relevance with regard to the endogenous factor Motivation by either the 
redundancy or communality method. Nonetheless, the “Indicator Crossvalidated 
Communality” table shows that the predictive relevance of the indicators of SES 
(OccStat and StdEduc) is only in the medium or moderate effect size range. 

The effect size measure q2 

The less-used q2 effect size measure is a third alternative statistic (in addition to 
redundancy and communality) which may be used to assess the predictive 
relevance of inner model paths to the endogenous variable. Recall above the 
discussion of the f2 effect size measure, in the section on the default PLS 
algorithm. In the same manner that f2 effect size was calculated based on R2 
values of models with and without an exogenous factor in the model (e.g., 
without SES in the Motivation model), so too similar values may be used to 
compute an effect size measure called q2, which compares Q2 predictive 
relevance values discussed above for models with and without a given latent 
construct. As this was described above for f2, it is not calculated here. See Hair et 
al. (2014: 194-197) for a worked example. The same low/medium/high cutoff 
criteria based on Cohen (1988) and discussed above are used to interpret q2. 

Single User License. Do not copy or post.



PARTIAL LEAST SQUARES (PLS-SEM)          2016 Edition 
 

Copyright @c 2016 by G. David Garson and Statistical Associates Publishing Page 122 
 

Confirmatory tetrad analysis (CTA) 

Overview 

Tetrad analysis tests the null hypothesis that the indicators for a model are 
reflective. If this null hypothesis is rejected, the inference is that a formative 
model should be used. However, PLS-CTA is a data-driven approach and a finding 
in support of formative modeling is trumped if there are sound theoretical 
reasons for thinking that reflective modeling is more appropriate. 

In PLS-CTA, the model under analysis must have at least 4 indicators per latent 
variable (construct). The current maximum in SmartPLS 3 is 25 indicators per 
construct. 

“Tetrad” is a Greek word for “four”. CTA examines sets of four covariances 
simultaneously. Given variables g, h, i, and j, the value of a tetrad equals cghcij – 
cgichj, where c is the population covariance of the subscript variables. A tetrad is 
said to be “vanishing” when equal to 0.  Bollen & Ting (1993) demonstrated how, 
in a proposed structural equation model, one might determine if any of the 
model-implied tetrads were vanishing ones.   
 
Confirmatory Tetrad Analysis (CTA) seeks, under PLS-SEM, to follow Bollen and 
Ting’s (2000; see also Ting, 2000) confirmatory method of testing model-implied 
vanishing tetrads (hence PLS-CTA). This method was adapted by Gudergang, 
Ringle, Wende, & Will (2008), using SmartPLS software, based on earlier tetrad 
approaches developed by Bollen and others. These authors (Bollen & Ting, 2000; 
Gudergang et al., 2008: 1241) outline a five-step process:  

1. Form and compute all vanishing tetrads for the measurement model of a 
latent variable.  

2. Identify model-implied vanishing tetrads.  
3. Eliminate redundant model-implied vanishing tetrads.  
4. Perform a statistical significance test for each vanishing tetrad. 
5. Evaluate the results for all model-implied non-redundant vanishing tetrads. 

While CTA-PLS generally follows the same principles and procedures as CTA-SEM, 
there are some differences. Because PLS does not conform to distributional 
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assumptions required by conventional significance testing, tetrads must be tested 
using bootstrap methods.  

A vanishing tetrad exits when, for a set of for indicator variables, the difference 
between the product of the covariances of two of the variables and the product 
of the covariances of the other two variables in the set, yields 0. If the value of the 
tetrad is not significantly different from 0, then the tetrad is vanishing.  However, 
rather than use the p value significance criterion, where significance corresponds 
to 0 not being within the unadjusted confidence limits, a bias correction is 
applied. Significance then corresponds to 0 not being within the bias-adjusted 
confidence limits and this is the operational test criterion.  

To summarize the logic of tetrad analysis (page numbers are from Gundergan et 
al., 2008): 

1. The null hypothesis is that a given tetrad evaluates to 0 (is vanishing) (p. 
1241). 

2. When a reflective model is tested, all model-implied non-redundant tetrads 
should vanish (p. 1239). 

3. Compute and test the values of the tetrads.  
4. A t-value above or below a critical value supports rejection of the null 

hypothesis (p. 1242), meaning that the tetrad value is significantly different 
from 0 and is not vanishing. 

5. A t-value above or below a critical value corresponds to a significant p value 
(p <= .05), also meaning the tetrad value is significantly different from 0 and 
is not vanishing. 

6. Thus, when 0 is not within the bias-adjusted confidence limits, we fail to 
accept the null hypothesis.   This usually but not always corresponds to p <= 
.05. 

7. Failure to accept the null hypotheses implies the model should be 
formative, not reflective. 

The example model 

Because PLS-CTA requires four or more indicators per construct, a new model was 
created as shown below, using the model-drawing methods described previously 
above. A different dataset was also used, jobsat4.csv, with the indicator variables 
shown in the diagram below (see above to download).   
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Running confirmatory tetrad analysis 

After selecting Calculate > Confirmatory Tetrad Analysis (CTA)  from the SmartPLS 
menu, a dialog appears with two tabs. Although default settings are usually 
accepted, the two tabs are discussed in turn below. 

1. Setup 
2. Weighting 
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The “Weighting” tab is identical to that discussed in previous sections above and 
the same considerations apply. The reader is referred above. The CTA  example 
here accepts the default settings. In this CTA example, no weights are used. 

The default settings for the “Setup” tab are shown in the figure above. There are 
four settings, all of which have been described for other procedures. The example 
accepts the default settings. 

1. Subsamples: Bootstrapping, which uses multiple re-samples from the data,  
is used for purposes of significance testing in PLS-CTA. While the default is 
set to a relatively small number (500) to minimize computational time in 
the early stages of modeling, this should be reset to a much larger number 
(e.g., 5,000) for final analysis. The larger number of samples helps assure 
stable results. 
 

2. Processes: This setting supports parallel processing. If the researcher’s 
computer has multiple processors, computation will be accelerated if the 
number of processors is specified. Do not attempt to specify a number 
higher than the actual number of processors on the researcher’s computer.  
 

3. Test Type: The usual two-tailed significance tests are the default. See 
discussion above. 
 

4. Significance Level:  The usual .05 significance level is the default cutoff for 
considering a result significant. See above. 

PLS-CTA output 

 PLS-CTA provides tetrad tests for the indicators for each latent construct in the 
original model, which was reflective. The constructs for this example were 
Incentives, SES, and Motivation. The table below has vanishing tetrad tests for 
each of these three latent constructs. 

The operational decision criterion is to look at the two right-most columns in the 
table, which are the low and high bias-adjusted confidence limits. If 0 is not within 
these confidence limits, then the tetrad value is significantly different from 0, 
meaning that the tetrad is not vanishing. When this occurs, usually but not always 
the p value will be significant also (p <-= .05).  
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To uphold and retain the reflective model, ideally all non-redundant tetrads 
would be vanishing. This would be indicated by 0 being within the bias-adjusted 
confidence limits for all tetrads (and usually p also being non-significant). What if 
0 is not within the bias-adjusted confidence limits but p is non-significant? This 
flags a marginal tetrad where bias correction was making a difference for 
inference. The actual decision rule, however, is governed by the bias-adjusted 
confidence limits, not the unadjusted p value. 

For the data in this example, 0 is not within the bias-adjusted confidence limits in 
at least one vanishing tetrad test within each of the three latent constructs. In the 
example, each construct had four indicators. Four indicators yield six covariances, 
three tetrads, and two non-redundant tetrads. Therefore there are two vanishing 
tetrad  tests per construct in the example output. 

In a reflective model all tetrads should be vanishing, meaning that for all tests, 0 
should be within the bias-corrected confidence limits. As that is not the case here, 
these data are better modeled formatively. Put another way, the measurement 
model (formative or reflective) should be selected whose assumptions are 
consistent with the results of the vanishing tetrads test. Here that is the formative 
model. 
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Naturally, since the data and model are different for this PLS-CTA section 
compared to sections on other PLS algorithms, inferences derived here do not 
apply to other sections. 

PLS-CTA and sample size 

Like all significance tests, differences from the null hypothesis (here differences of  
tetrad values from 0) are more likely to be found significant as sample size 
becomes larger. As sample size becomes extremely large, eventually all 
differences are significant and for PLS-CTA, the researcher will always reject the 
reflective model.  

When PLS-CTA rejects the reflective model in favor of a formative one, the 
researcher must ask if this is an artifact of large sample size. Partly the researcher  
can “eyeball” how close the lower and upper bias-adjusted confidence limits are 
to the 0 point. However, this author recommends the simple exploratory 
approach of running the analysis again for a moderate size (e.g., n = 200) random 
sample of the original data.  

With a smaller sample, the researcher will find that t values in the “T Statistics” 
column will diminish and the likelihood of 0 being within the lower and upper 
bias-adjusted confidence limits will increase. If the researcher finds that 0 is now 
within these confidence limits for all tetrad tests, the full-sample rejection of the 
reflective model is an artifact of sample size and retaining the reflective model is 
upheld. This random subsample strategy was undertaken for the example data 
and although t values did diminish they did not diminish enough for 0 to be within 
the limits and the substantive interpretation remained the same. That is, the full-
data finding that a formative model was appropriate remained upheld and the 
counter-hypothesis that this finding was an artifact of large sample size was 
rejected. 

Importance-performance map analysis (IPMA) 

Overview 

Importance-performance map analysis (IPMA), also called importance-
performance matrix analysis, adds no information about the researcher’s model 
apart from that already contained in the model’s path coefficients. However, 
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IPMA is a different way of presenting path information and this may prove 
insightful to the researcher. IPMA output is directed at determination of the 
relative importance of constructs (latent variables) in the PLS model.  

As discussed below, two dimensions are highlighted by IPMA analysis. Importance 
reflects the absolute total effect on the final endogenous variable in the path 
diagram (or other selected construct of interest). Performance reflects the size of 
latent variable scores.  

SmartPLS 3 online help observes, “conclusions can be drawn on two dimensions 
(i.e., both importance and performance), which is particularly important in order 
to prioritize managerial actions. Consequently, it is preferable to primarily focus 
on improving the performance of those constructs that exhibit a large importance 
regarding their explanation of a certain target construct but, at the same time, 
have a relatively low performance.” 

The example model 

For purposes of illustration of IPMA, we adapt the previously-discussed 
“Motivation” model to become the “Motivation2” model by adding an arrow 
from SES to Incentives. (If the reader is following along, make sure the dataset is 
set to the original jobsat.csv). The figure below shows the Motivation model and 
resulting standardized structural path coefficients (inner model loadings) for the 
default PLS algorithm model. This is the same model as discussed above with 
regard to partitioning total effects. However, corresponding output for the IPMA 
algorithm may appear different because by default, the IPMA module displays 
different coefficients.  
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The PLS algorithm model above displays path coefficients connecting the latent 
constructs, the outer model paths are outer loadings, and the values inside the 
blue constructs are R2 coefficients. 

The IPMA algorithm model below also displays path coefficients connecting the 
latent constructs but the outer model paths are outer weights and the values 
inside the blue constructs are LV (latent variable) performance coefficients. In 
spite of the different appearance, the PLS and IPMA analyses are the same model 
for the same data. (On weights vs. loadings, see above). 
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Running IPMA 

After selecting Calculate > Importance Performance Map Analysis (IPMA) from the 
SmartPLS menu, a dialog appears with three tabs. Although default settings are 
usually accepted, these tabs are discussed below. 

1. Setup 
2. Partial Least Squares 
3. Weighting 

 
The “Weighting” tab is identical to that discussed in previous sections above as is 
the “Partial Least Squares” tab, also discussed in a section above.  The CTA  
example here accepts the default settings under these tabs, including not using 
weights.  
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In the IPMA setup tab there are settings for latent variable, results, and ranges. 

• Latent Variable:  Select the latent variable of interest. Here it is Motivation, 
which is the final endogenous variable in the model. 
 

• PLS-IPMA Results: The default “All Exogenous LVs “ selection causes the 
importance-performance map to include all model constructs whose paths 
directly or indirectly lead to the latent variable of interest in the path 
sequence.   The alternative “ Direct LV Predecessors” selection  includes 
only model constructs which are direct predecessor constructs for the 
target construct of interest.  
 

• Ranges: IPMA results include performance scores on a 0 – 100 scale. To 
correctly re-scale to a 0 – 100 basis, it is essential that the scales of the 
indicator (manifest) variables be input correctly.  SmartPLS searches the 
dataset and finds minimum and maximum observed values which it 
assumes constitutes the range. However, this assumption may be incorrect. 
For instance, data may be Likert items on a 1 – 7 scale, yet the actual 
dataset may have values of only 3 -7. In such a case, the researcher must 
enter the correct actual range (1 – 7). Directionality of all variables should 
be the same: for all variables, the high value of the range must represent 
“better” or “more”. Failure to enter correct ranges will yield incorrect 
performance scores.  Changes to provisional ranges scores are made simply 
by clicking on the computed value and entering another. Alternatively, 
minimum and maximum values may be entered at the bottom and applied 
to all variables. 
 In the example, the ranges of the Incent and Motive variables are 0 – 
20; for OccStat the range is 0 – 100; the StdEduc range does not need to be 
reset. The changes are reflected in the figure below. 
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 Click the “Start Calculation” button in the lower right when all settings are 
complete. 

Overview 

FIMIX-PLS (finite mixture PLS) is required when the data are not homogenous but 
require segmentation into groups as part of analysis (see Hahn, Johnson, 
Herrmann, & Huber, 2002; Ringle, Wende, & Will, 2010; Ringle, Sarstedt, & Mooi, 
2010; Sarstedt, Becker, Ringle, & Schwaiger, 2011. Put another way, FIMIX is 
needed when unobserved heterogeneity is suspected, discussed below. Failure to 
employ FIMIX when needed may well lead to substantive errors of interpretation 
of results.  

FIMIX-PLS segments observations based on heterogeneity in the inner path 
model. As such, FIMIX-PLS can be employed to evaluate aggregate models, such 
as ones based on the standard procedure, to assure that aggregate results are not 
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influenced by unobserved heterogeneity in the inner path model estimates. See 
further discussion and illustration below, in the section on multigroup PLS.  

IPMA Output 

LV index values 

LV index values are the mean of the unstandardized latent variable scores. These 
are used, as described below, to compute performance values. Note that this, 
here in the IPMA module, is where in SmartPLS 3 you may obtain unstandardized 
latent variable scores.  

 

Performance values 

After norming to 0 – 100,  the mean of the transformed latent variable scores are 
the performance values. Results are shown below for the Motivation model: 
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“Importance” refers to total effects of the model, based on standardized 
structural (inner model) path coefficients. Total effects (and hence “Importance”) 
for the Motivation model is  listed for the total effects of exogenous variables on 
the endogenous dependent variable, here the Motivation construct. 

The importance-performance map 

While very simple for the present case of two predictor latent variables, the graph 
importance-performance map becomes increasingly helpful as additional latent 
variables make the model more complex.   
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“Importance”: Measured on the X axis, a construct is more important if it has a 
higher absolute total effect on the construct of interest. Though in a negative 
direction, SES here has somewhat greater absolute importance than does  
NCENTIVES. 

“Performance”:  Measured on the Y axis, a construct has greater performance if it 
has higher mean latent variable scores, reflecting stronger measurement paths. 
Here, SES displays greater performance. Performance values are those from the 
“LV Performances” table above. 

The values in the map are also output as tables. (In SmartPLS 2, the two tables 
were combined in a single matrix, hence “importance-performance matrix 
analysis”). 
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For further reading, SmartPLS 3 online help recommends Hair et al. (2014) for 
detailed explanation of IPMA; for applications of IPMA, see Höck et al. (2010), 
Völckner et al. (2010)  Rigdon et al. (2011), and Schloderer et al. (2014).  

Finite-mixture segmentation analysis (FIMIX) 

Unobserved heterogeneity 

Unobserved heterogeneity means that there are one or more variables or 
constructs not included in the model but which account for differences in 
estimated coefficients. The researcher may well not even know what these 
unobserved variables are, much less have data for them. If unobserved variables 
are important, groups (subsets of data) may need to differ in PLS coefficients 
computed for them. That is, the model may need to differ between groups and 
the coefficients computed by the traditional PLS algorithm may reflect “bad 
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averages” across unlike  groups. This in turn will lead to both Type I and Type II 
errors of inference. 

The presence of unobserved heterogeneity may be rejected and the traditional 
whole-sample PLS solution may be pursued if (1) average variance explained in 
multi-segment models is lower than for the traditional PLS solution; and (2) PLS-
FIMIX model-selection criteria for the one-segment solution shows better fit than 
for multi-segment solutions, for which fit deteriorates markedly (Becker et al., 
2013: 686). 

Under FIMIX, the researcher specifies the number of groups in advance. The 
general strategy of the FIMIX algorithm Is to partition the dataset optimally into 
the given number of groups and compute separate coefficients for each group. 
FIMIX assigns cases to groups in a manner which optimizes the likelihood 
function, thereby maximizing segment-specific explained variance. The use of a 
maximum likelihood method, it should be noted, requires the assumption that 
the endogenous latent constructs have a multivariate normal distribution. That is, 
FIMIX-PLS is a parametric form of PLS, which in its traditional form is non-
parametric. 

Though further below, output is shown for the three-group solution, the strategy 
calls for the researcher to explore many solutions (e.g., the two-group through 
the ten-group solutions).  Goodness-of-fit measures discussed below can be used 
to identify which solution is best. Since this is a data-driven strategy, the 
researcher also must be careful to assure that the best-solution groups make 
sense and have a theoretical rationale.  

As with any data-driven procedure, there is the possibility that FIMIX-identified 
groups may reflect noise in the data, not true underlying segmentation of the 
dataset by unobserved variables. For this reason it is desirable to develop the 
model with one set of data (e.g., the even numbered cases) and validate it with 
another set (e.g., the odd numbered cases). Cross-validation using a hold-out 
validation sample is described by Becker et al. (2013: 687-688). 

In summary, interpretation of PLS-SEM estimates based on the default aggregate 
estimation method may involve substantive error if the data are segmented such 
that it would be better if separate structural path models were created for each 
segment. If the segments are observed groups and parametric tests may be 
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applied, then parametric multigroup analysis may be applied, discussed below. 
However, often there is unobserved heterogeneity – “unobserved” because the 
researcher does not know a prior what the groups are. As unobserved 
heterogeneity can bias results of default PLS, some authors recommend routine 
use of FIMIX-PLS to detect possible unobserved heterogeneity. Other approaches 
are possible, noted below. 

If successful in statistical and theoretical terms, finite mixture analysis serves to 
segment observations into groups which may be subject to different analyses, 
policies, marketing strategies, etc., according to the context. As such PLS-FIMIX is 
an alternative to cluster analysis, which also may be used to identify groups in the 
face of unobserved heterogeneity. See the separate Statistical Associates’ “Blue 
Book” volume on “Cluster Analysis.”  

Comparing models with differing numbers of segments 

To run a FIMIX analysis, select “Finite Mixture (FIMIX) Segmentation” from the 
“Calculate” button drop-down menu. The “Finite Mixture (FIMIX) Segmentation” 
window appears, shown below opened to the first of two tabs: Setup. 
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The second tab, “Partial Least Squares”, provides weighting and other options for 
the PLS algorithm. As this was discussed above, it is not discussed or illustrated 
here. 

Since the number of segments typically is not known, the researcher must run 
FIMIX-PLS for 2, 3, and more segments (Ringle recommends 2 to 10; Ringle, 2006: 
5). Moreover, due to random aspects of the PLS-FIMIX algorithm, for any specified 
number of segments, different fit values will be generated for each run. 
Therefore, the researcher should conduct multiple runs for each segment size, 
then use the mean fit values (e.g., mean AIC) when comparing numbers of 
segments to identify the optimal number. 

After multiple runs, information theory goodness-of-fit measures are then used to 
select the model with the optimal number of segments. Sarstedt, Becker, Ringle, 
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& Schwaiger (2011: 52), based on systematic computational simulation methods 
and looking at 18 alternative model selection criteria, concluded that when 
modified AIC3 (a variant of AIC, the Akaike Information Criterion) and CAIC 
(Consistent AIC) used in tandem provided the best classification performance. 
These authors write (p. 45), “whenever AIC3 and CAIC indicate the same number 
of segments, this result meets the correct number of segments in 84% of all cases. 
Alternatively, a joint consideration of AIC3 and BIC appears promising, because 
this combination yields the true number of segments in 82% of all cases where 
both criteria.” 

Note that in an earlier article, Sarstedt & Ringle (2010: 1303) recommended use 
of CAIC as a criterion for identifying the optimal number of segments. However, 
reconsideration in the Sarstedt, Becker, Ringle, & Schwaiger (2011) article, based 
on simulation, revised this recommendation as described above. CAIC alone was 
found to underfit the model. 

AIC3 and CAIC values are output by default for each FIMIX-PLS run, as in the table 
below. As discussed above, using AIC3 and CAIC jointly is recommended. The 
coefficients lack an easily-expressable intrinsic meaning. Instead they are used in 
model comparisons, with lower being better fit.   

Example PLS-FIMIX output for one of the runs for number of segments = 3. is 
shown below. A variety of fit indices are output in addition to the commonly used 
AIC, AIC3, CAIC, and BIC criteria. Sarstedt et al. (2011: 44), based on their 
simulation study of classification performance, noted that apart from AIC3 and 
CAIC as discussed above, “All other criteria (AIC, AICc, MDL5, lnLc, NEC, ICL-BIC, 
AWE, CLC, and EN) exhibit very unsatisfactory success rates of 28% and lower. AIC 
achieved the worst performance of only 6%.” 
 
The output below is for SmartPLS 3.2.1. Starting with version 3.2.2, SmartPLS will 
output a shorter list of fit and segment separability coefficients as discussed in the 
section which follows. 
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In summary, let K be the number of proposed segments. After running FIMIX-PLS 
for K = 2 to 10, the optimal number of segments is the one with the lowest 
modified AIC3 and CAIC which also has entropy of .5 or higher (entropy is 
discussed). below There may be no optimal solution since entropy may be low for 
all solutions, indicating lack of separation will undermine interpretation of 
segments. If segments cannot be interpreted due to low separation, indicated by 
low entropy, the researcher may prefer to revert to the global model using the 
default PLS algorithm.  

Fit Indices 

SmartPLS 3 now outputs a large number of fit indices in its FIMIX module. Each is 
discussed briefly below. 

Akaike Information Criterion – AIC  
AIC is a goodness-of-fit measure which adjusts model chi-square (minus 2 
log likelihood) to penalize for model complexity (that is, for lack of 
parsimony and over-parameterization). Model chi-square is a likelihood 
measure and AIC is a penalized likelihood measure Model complexity is 
defined in terms of degrees of freedom, with higher being greater 
complexity. As  sample size decreases, the penalty for model complexity 
decreases slightly. AIC will go up (higher is worse fit) approximately 2 for 
each parameter/arrow added to the model, penalizing for model 
complexity and lack of parsimony. 

AIC may be used to compare models with different numbers of latent 
variables, not just nested models with the same latent variables but fewer 
arrows. That is, unlike model chi-square, AIC may be used to compare non-
hierarchical as well as hierarchical (nested) models based on the same 
dataset, whereas model chi-square difference is used only for the nested 
models.  

AIC is computed as -2*lnL + 2*Ns, where lnL is the log-likelihood and Ns is 
the number of parameters for a model with S segments. 

The absolute value of AIC has no intuitive value, except by comparison with 
another AIC, in which case the lower AIC reflects the better-fitting model. 
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AIC close to zero reflects good fit. It is possible to obtain AIC values < 0. In 
model development, the researcher stops modifying when AIC starts rising.  
See Akaike (1973, 1978). 
 

Bayesian Information Criteria – BIC  
BIC is also known as Akaike's Bayesian Information Criterion (ABIC) or the 
Schwarz Bayesian Criterion (SBC, SBIC). BIC penalizes for sample size as well 
as model complexity. That is, as sample size increases, the BIC penalty 
increases. Compared to AIC, BIC more strongly favors parsimonious models 
with fewer parameters. In general , BIC has a conservative bias tending 
toward Type II error (thinking there is poor model fit when the relationship 
is real). BIC may be recommended when sample size is large or the number 
of parameters in the model is small.  
 
BIC is computed as -2*lnL + ln(N)*Ns, where lnL is the log likelihood, N is 
sample size, and Ns is the number of parameters in a model with S 
segments. 

BIC is an approximation to the log of a Bayes factor for the model of 
interest compared to the saturated model. BIC came into widespread use in 
sociology after it was popularized by Raftery (1995) in the 1980s. Later, 
however, the limitations of BIC emerged in the literature. See Winship, ed. 
(1999), on controversies surrounding BIC. BIC uses sample size n to 
estimate the amount of information associated with a given dataset. A 
model based on a large n but which has little variance in its variables 
and/or highly collinear independents may yield misleading model fit using 
BIC.  See Schwarz (1978). 
 

Consistent AIC – CAIC  
CAIC penalizes for sample size as well as model complexity (lack of 
parsimony). The penalty is greater than AIC but less than BIC. As with AIC, 
the lower the CAIC measure, the better the fit.  
 

Modified AIC (Factor 3) – AIC3)  
Modified AIC 3 was developed by  Bozdogan (1994) as  version of AIC with a 
stronger penalty for lack of parsimony/overfitting. It penalizes by three 
times the number of parameters rather than  by AIC’s two.  It is computed 
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as  -2*lnL + 3*Ns, where lnL is the log-likelihood and Ns is the number of 
parameters for a model with S segments. 
 

Modified AIC (Factor 4) – AIC4)  
This fit criterion will be output starting with SmartPLS 3.2.2.  It adds a 
stronger penalty of 4*Ns rather than 3*Ns.  
 

Minimum Description Length (Factor 2) - MDL_(2)   
MDL 3 is computed as -2*lnL + 3*ln(N) - Ns, where lnL is the log-likelihood, 
N is sample size, and Ns is the number of parameters for a model with S 
segments. See Liang, Jaszczak, & Coleman (1992).  This coefficient will no 
longer be output starting with SmartPLS 3.2.2. 
 

Minimum Description Length (Factor 5) - MDL_(5)   
MDL 5 is computed as -2*lnL + 5*ln(N) - Ns, where lnL is the log-likelihood, 
N is sample size, and Ns is the number of parameters for a model with S 
segments. See Liang, Jaszczak, & Coleman (1992).   

 
Hannan Quinn Criterion - HQ   

HQ is intended to correct BIC for small samples. It does this by employing a 
stronger penalty term.  For larger samples, HQ can be seen as a 
compromise between AIC's relative leniency toward adding parameters to 
the model and BIC's relative harshness.  

Entropy Statistic (Normed) - EN   
Entropy is discussed in the following section, below.   

 
Classified Likelihood Criterion - CLC  

Like EN, CLC is used to gauge the separation of segments in FIMIX, but it 
incorporates log-likelihood fit criteria as part of its algorithm. See Biernacki 
and Govaert (1997); Wedel & Kamakura (2000).  This coefficient will no 
longer be output starting with SmartPLS 3.2.2. 
 

Integrated Completed Likelihood BIC - ICL-BIC  
The integrated completed likelihood BIC is an alternative to CLC. Its 
algorithm also tries to balance entropy-based segmentation criteria with 
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BIC-based fit criteria. See Biernacki, Celeux, & Govaert, 2000. This 
coefficient will no longer be output starting with SmartPLS 3.2.2. 

 
LnL  

This is the log-likelihood value for the model. Minus 2 times this value is the 
model chi-square value. It is a measure of model error, with lower being 
better fit. However, it is mainly used as the basis for other measures, which 
adjust for model parsimony/overfitting. This coefficient will no longer be 
output starting with SmartPLS 3.2.2. 
 

PC 
PC is the partition coefficient, an alternative to normalized entropy when 
classifying observations into segments. Let pis  be the a-posteriori 
probability of observation i belonging to segment s, then PC = p2

is summed 
from 1 to N and cumulated for each segment, times the natural log of pis. 
See Bezdek (1981). This coefficient will no longer be output starting with 
SmartPLS 3.2.2. 
 
PC = ∑1 ∑2 p2

is/N, where p2
is is the squared a posteriori probability, N is 

sample size, S is the number of segments, the first summation is from i=1 to 
N, and the second summation is from s = 1 to S. 

 
PE 

PE is partition entropy, another alternative to normalized entropy when 
classifying observations into segments. See Bezdek (1981). 

PE = [∑1 ∑2 pis * lnpis]/N, where pis is the a posteriori probability, N is sample 
size, S is the number of segments, the first summation is from i=1 to N, and 
the second summation is from s = 1 to S. This coefficient will no longer be 
output starting with SmartPLS 3.2.2. 

 
NFI  

This is the non-fuzzy index developed by Roubens (1978). Its formula 
incorporates a-posteriori probabilities of an observation belonging to a 
particular segment. The somewhat complex formula is given in Sarstedt et 
al., 2011: 54.   Not to be confused with the normed fit index (also NFI) used 
in covariance-based structural equation modeling. 

Single User License. Do not copy or post.



PARTIAL LEAST SQUARES (PLS-SEM)          2016 Edition 
 

Copyright @c 2016 by G. David Garson and Statistical Associates Publishing Page 147 
 

 
LnL_C 

Also labeled lnLc , this is the complete log-likelihood statistic, developed by 
Dempster, Laird, & Rubin (1977). This coefficient will no longer be output 
starting with SmartPLS 3.2.2. 

 
AWE  

AWE is the approximate weight of evidence criterion originated by Banfield 
&Raftery (1993). 
 
AWE = -2lnLc + 2Ns *[1.5 + ln(N). where N is sample size, S is the number of 
segments, Ns is the number of parameters required for a model with S 
segments, and lnLc is the complete log-likelihood statistic. On lnLc , see 
Dempster , Laird, and Rubin (1977); Sarstedt et al. 2011: 54. This coefficient 
will no longer be output starting with SmartPLS 3.2.2. 

 
E, NPE, C, and LP will no longer be output starting with SmartPLS 3.2.2. 

 
There are, of course, yet other fit measures. Perhaps the most commonly cited 
one in the literature is GoF goodness of fit. PLS 3 does not output this for FIMIX, 
noting on its website that “Goodness of Fit (GoF) has been developed as an 
overall measure of model fit for PLS-SEM. However, as the GoF cannot reliably 
distinguish valid from invalid models and since its applicability is limited to certain 
model setups, researchers should avoid its use as a goodness of fit measure. The 
GoF may be useful for a PLS multi-group analysis (PLS-MGA).”  

Moreover, because of its nonparametric basis, PLS is inappropriate for calculating 
fit measures such as found in covariance-based SEM (e.g., not  CFI, RFI, NFI 
[normed fit index], IFI, or RMSEA). Fit measures common to PLS and covariance-
based SEM include those based on information theory, such as AIC, BIC, and their 
variants. 

Entropy 

EN is the normed entropy criterion (Ramaswamy, DeSarbo, & Reibstein, 1993). 
Shown as "EN" in the output above, entropy is a measure of separation of 
segments, with 1.0 indication total separation (all observations have a 1.0 
probability of being in a particular segment and a 0.0 probability of being in any 
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other segment). The above-mentioned simulation experiments by Sarstedt and 
his associates cast doubt on whether use of this measure adds utility in 
determining the optimal number of segments, beyond the use of AIC3 and CAIC. 
However, entropy is useful as an indicator of the likelihood that the segments will 
be clearly defined and interpretable.  

Ringle (2006: 6) suggests that entropy must be ≥ .5 for unambiguous 
segmentation, not the case here for number of segments = 3 since N = .119. If 
path coefficients differ significantly across segments but the segments are not 
interpretable, the researcher ordinarily will prefer the default global PLS solution. 
For computation of entropy (EN) and further discussion, see Ramaswamy, 
Desarbo, Reibstein, & Robinson (1993). A normalized version of the entropy 
criterion is also available – NEC, the normalized entropy criterion (see Celeux & 
Soromenho, 1996).   

Starting with SmartPLS 3.2.2, SmartPLS offered only three coefficients used for 
segment separability: EN, NEC, and NFI (non-fuzzy index, discussed in the previous 
section. The formulas for EN and NEC are shown below (Sarstedt, ecker, Ringle, & 
Schwaiger, 2011: 54). 
 

• EN (Entropy criterion, a.k.a. normed entropy criterion) 
EN = 1 – [∑1 ∑2 pis * ln(pis )] /[N*ln(S)] 
Where pis  is the a-posteriori probability of observation i belonging to 
segment s and S is the number of segments. Let N be sample size. 
The first summation is from i=1 to N, and the second summation is 
from s = 1 to S. See Ramaswamy, DeSarbo, & Reibstein (1993). 

E(S) is the estimated entropy for a model with S segments. 
E(S) = [∑1 ∑2 pis * ln(pis )] 
 

• NEC (Normalized entropy criterion) 
NEC = E(S)/[ln(S)-ln(1)] 
Where notation is as for EN but ln(S) is the log likelihood for a model 
with S segments and ln(1) is the log likelihood for a model with 1 
segment.  
 
Celeux & Soromenho (1996: 203) choose S clusters if NEC(S)< NEC(1); 
otherwise they declare no clustering structure in the data. NEC is a 
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parametric coefficient which assumes a Gaussian/normal distribution 
(which includes but is not limited to standard normal distributions 
where the mean is 0 and the variance is 1). They write, “our 'ad hoc' 
procedure to test K = 1 versus K > 1 is not theoretically based and can 
only be applied for Gaussian mixtures” (p. 210). 

Path coefficients 

Path coefficients may be displayed in standardized or unstandardized form. Using 
the arrow-buttons highlighted on the left in the figure below, the user may toggle 
among segments (here there three were requested). Path coefficients will change 
for each segment, reflecting somewhat different models for each segment of the 
population. Since coefficients will vary across runs for the same segment, the 
researcher may wish to average path coefficients across runs for the same 
segment.  

In the figure below, output is shown in standardized form for segment 1, run 2. 
Output is not shown for other segments and runs.  
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The Report menu selection will also display the same coefficients in table form, 
shown below. 

 

• If the path coefficient differences between segments are significant and if 
entropy suggests the segments are interpretable, this indicates the need 
for different models for different groups. The researcher will report mean 
FIMIX path results for the optimal number of segments as determined 
usually using AIC3 and CAIC as described previously.  

• If the path coefficient differences are not significant and entropy is below 
.5, the researcher concludes that unobserved heterogeneity is not a 
problem and the ordinary global PLS algorithm is applied. 

• If the path coefficients differ significantly but the entropy is below .5, as for 
the results above, unobserved heterogeneity may be affecting results but 
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given the variables measured in the model, the nature of the segments 
involved with unobserved heterogeneity is very likely to be 
uninterpretable. Many researchers would revert to the ordinary global PLS 
solution simply on the basis of low entropy. However, this situation may 
reflect the need for model respecification. Alternatively, if applying FIMIX 
to a validation dataset results in segmentation with significantly different 
case membership, the researcher may conclude that the segments 
identified by FIMIX reflect arbitrary noise in the data and the researcher 
may report the results of the ordinary global PLS algorithm.  

T-tests of differences in path coefficients 

Independent samples t-tests  may be used to test the significance of differences in 
path coefficients between segments or between those of a segment from FIMIX-
PLS and the aggregate solution using the default PLS algorithm. See Keil et al. 
(2000).  

Testing differences may be required when considering whether to collapse a small 
segment into a larger one. Too-small segments may mean that the researcher has 
requested too many segments in the solution. Alternatively, if the number of 
segments is optimal but a segment is too small, it may be collapsed into other 
segments from which is it not significantly different (Becker et al., 2013: 686).  
The significance of differences between segment may be tested in multi-group 
analysis, as discussed below, though significance testing introduces parametric 
assumptions (which FIMIX has anyway, by virtues of maximum likelihood 
methods). 

Labeling the segments 

PLS outputs a table of segment proportions of the sample, illustrated below. Very 
small segment sizes may indicate too many segments have been requested and 
also that all segments may not be interpretable. Here all segments are greater 
than 10% of the sample. 
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After selecting the optimal number of segments based on model fit measures, 
and after finding sufficient likely interpretability of segments using entropy,  
classification measures, and segment proportions, the researcher arrives at 
different path models for each segment. But what groups do the segments 
represent? 

Labels for the segments must be inferred from the membership of observations in 
each segment. The final partition by observation table, shown below for the first 
10 observations in the three-segment solution, is default output for FIMIX-PLS. 
Segment memberships are probabilistic and below the highest probability for 
each observation is shown in color (added, not part of PLS output).  

Ideally, any given observation would load heavily on one and only one segment. 
In simple segment structure, ideally each observation would have a loading of .7  
higher on just one segment, with other loadings for that observation being .30 or 
lower. If simple segment structure existed, segments would be easy to interpret. 
Conversely, the more all loadings for an observation are mid-range, the less easy 
is interpretation of segments. Simple segment structure is an ideal, rarely 
attained. Below, only observation 5 meets this ideal. 
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It may be possible to infer labels for segments based on highest loading, which for 
the output above would group observations in segment 1 (cases 2, 3, 4, 6, 8, and 
9), segment 2 (case 5), and segment 3 (cases 1, 7, and 10).  

Alternatively, the researcher may find it simpler to base labeling on very highly 
loaded observations. Ringle (2006: 5) suggests concentrating on observations 
loaded at the .8 level or higher. Low entropy, as for the example data above, 
means cross-loaded observations will be numerous and no strategy will result in 
credible segment labels.  

Note also that labeling of segments is not required and is not always performed. 
See also the discussion of group assignment below, in the section on PLS-POS. 

Prediction-oriented segmentation (POS) 

Overview 

Prediction-oriented segmentation (POS, or PLS-POS) is an alternative to FIMIX as a 
method of treating unobserved heterogeneity in one’s data. Henseler, Ringle, & 
Sarstedt  (2016) find PLS-POS to be superior to PLS-FIMIX as a segmentation 
method. Like FIMIX, POS is a form of multi-group analysis in which groups are 
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derived through a data-driven methodology. Multi-group analysis (MGA), 
discussed below, in contrast, typically connotes analysis in which the researcher 
has observed data on known groups of interest.  

Unobserved heterogeneity may lead to Type I and Type II error of interpretation. 
Becker, Rai, Ringle, & Volckner conducted simulations showing that FIMIX and 
POS both perform well for reflective models, but POS performs better for 
formative models (Becker et al., 2013: 665-666). Where the FIMIX procedure 
employs parametric t-tests, the POS procedure is fully non-parametric, not 
assuming a normal distribution (Becker et al., 2013: 677). Where FIMIX tests 
unobserved heterogeneity in the structural model (the relationship among the 
latent constructs), POS tests unobserved heterogeneity in both the structural and 
the measurement model (the relationship of the indicator variables to their 
constructs). In general, POS conforms more to the assumptions involved in 
modeling unobserved heterogeneity and may be preferred for this reason. 

PLS-POS uses an objective criterion for model fit, namely one of two R-square 
measures. The default measure uses R-square across all constructs in the model, 
thereby testing segmentation for both the measurement (outer) and the 
structural (inner) model. The alternative measure uses R-square for a target 
construct selected by the researcher. 

The algorithm for PLS-POS bases assignment of cases to segments on a distance 
measure appropriate for PLS path models. (Formulas for this complex distance 
measure are given in Becker et al., 2013: Appendices A5-A6). The distance 
measure, unique to PLS-POS, is consistent with both formative and reflective 
models. The distance criterion is applied over many iterations, seeking 
performance improvement through a process called “hill-climbing”.  Although 
distance is used to assign cases to segments (groups), the iterative algorithm may 
re-assign cases to different groups as it searches for an optimal solution. The 
algorithm “Assigns only one observation to the closest segment and assures 
improvement of an objective criterion (R² of all endogenous latent variables) 
before accepting the change“ (Becker et al., 2013: Appendices, A4). That is, 
“optimal” is defined in terms of R-squared values for the endogenous constructs 
in the model.  It may be noted that the PLS-POS algorithm is computer-intensive 
and takes more time than the PLS-FIMIX solution for the same model (e.g., Becker 
at al. [2013: 689] report three minutes vs. ten seconds for their simulated 
dataset) 
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The presence of unobserved heterogeneity may be rejected and the traditional 
whole-sample PLS solution may be pursued if (1) R2 in multi-segment models is 
lower than for the traditional PLS solution; and (2) PLS-POS R2 criteria for the one-
segment solution shows better fit than for multi-segment solutions, for which  R2  
deteriorates markedly (Becker et al., 2013: 686). 

For further details, see Becker et al. (2013) and Squillacciotti (2005).  

The example model 

The PLS-POS example used for output discussed below is the MotivationF 
formative model, shown below (with path coefficients calculated by the POS 
algorithm). MotivationF was discussed previously above.  

 

Running POS 

To run a POS analysis, select “Prediction Oriented Segmentation (POS)” from the 
“Calculate” button drop-down menu. The “Prediction Oriented Segmentation 
(POS)” window appears, shown below opened to the first of two tabs: Setup. The 
default values are shown (except search depth is set to sample size, 931, not the 
default of 1,000) and were used in the example output further below. 

Single User License. Do not copy or post.



PARTIAL LEAST SQUARES (PLS-SEM)          2016 Edition 
 

Copyright @c 2016 by G. David Garson and Statistical Associates Publishing Page 157 
 

The second tab, “Partial Least Squares”, provides weighting and other options for 
the PLS algorithm. As this was discussed above, it is not discussed or illustrated 
here. 

 

Options in the “Basic Settings” and “Advanced Settings” areas are discussed 
below: 

1. Groups: This specifies how many segments are to be employed in the 
analysis.   

2. Maximum Iterations:  POS is an iterative process. By default, the 
algorithm performs up to 1,000 iterations, which is sufficient in nearly all 
cases, but which can be overridden by the researcher. 

3. Search Depth: The search depth is how many observations will be 
considered for reassignment to test if the optimization criterion is 
improved. The number specified may not be more than the sample size 
(931 in the example). In exploratory runs of the POS model, a lower 
search depth may be used to speed calculation. For confirmatory 
modeling, the sample size should be used.  
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4. Pre-Segmentation:  Not to use pre-segmentation is the default. If this 
box is checked, a distance measure is used to pre-assign all observations 
to the best-fitting group (segment) and only then does the algorithm 
start its iterative algorithm. There is no assessment of whether pre-
segmentation improves the performance of the model. 

5. Optimization Criterion: This option sets the criterion used to assess 
model fit. By default, the criterion is the “Sum of All Construct R-
Squares”, which is based on  the sum of all R-Squares for all segments in 
the model. The alternative is “Sum of Target Construct R-Square”. If this 
is selected, the researcher must specify the target construct. The  “Sum 
of Target Construct R-Square” is based on the sum of R-squares for this 
target construct (not all endogenous constructs) summed over all 
segments.    

POS output 

Overview 

The iterative nature of PLS-POS means that coefficients and group assignments 
may vary noticeably from run to run of the model. The POS algorithm starts by 
splitting the sample randomly into groups (unless pre-segmentation is invoked) 
and then uses a distance measure to reassign observations. (PLS-FIMIX, in 
contrast, does not employ a distance measure). SmartPLS documentation, 
following Becker et al. (2013: 676), warns, “A repeated application of PLS-POS 
with different starting partitions is advisable to avoid local optima.”  Different 
starting positions will occur automatically with each run of the model. Wedel & 
Kamakura (2000), endorsed by Becker et al. (2013: Appendixes, A6), recommend 
running the PLS-POS algorithm several times to attain alternative starting 
partitions and, finally, to select the best segmentation solution.” 

Additionally, runs of the same model may be undertaken for multiple samples 
from the population or multiple samples from the data for purposes of assessing 
reliability (Becker et al., 2013: 688).  

Finally, sensitivity analysis may be conducted by requesting models with differing 
numbers of segments, such as from 2 to 10. This also may be useful when testing 
some a priori assertion about the number of segments in the population (e.g., a 
prior assertion about the number of market segments in a marketing application). 
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Segment sizes 

As in any classification procedure, it is desirable than no classification group be 
too small. When segments are not substantial in size, they may reflect outliers, 
“bad respondents”, over-fitting and other statistical artifacts (Becker et al., 2013: 
686). One rule of thumb is that splits of 90:10 or worse are to be avoided for two-
segment solutions. The “Segment Sizes:” table shows the pertinent information. 
In this case, the smaller of the two groups is over 11% of the total, which is not 
considered problematic, particularly for moderate to large samples sizes (here, n 
= 931, so the smaller segment still has 105 observations). 

 

Too-small segments may mean that the researcher has requested too many 
segments in the solution. Alternatively, if the number of segments is optimal but  
a segment is too small, it may be collapsed into other segments from which is it 
not significantly different (Becker et al., 2013: 686).  The significance of 
differences between segment may be tested in multi-group analysis, as discussed 
below, though significance testing introduces parametric assumptions. 

POS R-squared coefficients  

The R-square coefficients, which were based on the default sum of R-squares for 
the model (though this model has only one endogenous variable), show that the 
level of explanation of Motivation by Incentives and SES is much higher for the 
smaller Segment 1 than for the larger Segment 2.  However, even the latter is 
slightly higher than for the original sample R-square. 
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Original and PLS-POS path coefficients 

For the structural (inner) model, standardized path coefficients are output for the 
original model and for each segment. Again, path coefficients are stronger for the 
smaller segment, Segment 1. 

 

Single User License. Do not copy or post.



PARTIAL LEAST SQUARES (PLS-SEM)          2016 Edition 
 

Copyright @c 2016 by G. David Garson and Statistical Associates Publishing Page 161 
 

 

Measurement model (outer) weights and loadings 

For the measurement (outer) model, both weight and loading coefficients are 
output. Both are used to understand the relative importance of indicator 
variables vis-à-vis their constructs. Weights are used for this purpose for 
formative models while loadings are used for reflective models.  

For reflective models, loadings are the correlations between the indicator variable 
and the construct. By one rule of thumb in confirmatory PLS factor analysis, 
loadings should be .7 or higher to confirm that indicator variables identified a 
priori are represented by a particular construct (Hulland, 1999: 198).  However, 
the .7 standard is a high one and real-life data may well not meet this criterion, 
which is why some researchers, particularly for exploratory purposes, will use a 
lower level such as .4 for the central factor and .25 for other factors 
(Raubenheimer, 2004). Of course, loadings must be interpreted in the light of 
theory, not by arbitrary cutoff levels.   
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However, for formative models (as in this example), weights represent the 
importance of each indicator in explaining the variance of the construct (Becker et 
al., 2013: 670; see Edwards & Lambert, 2007; Petter et al., 2007); Wetzels et al., 
2009). It follows that the "weights" may be used to impute meanings for the 
formative constructs, as discussed below.  

In the output below, it may be noted that the ratio of weights of Incent1 to 
Incent2 is approximately 2:1 for the Incentives construct in Segment 1, but the 
two indicator variables are much more equal in importance in Segment 2 (the 
larger segment). We may say that Incent1 contributes much more to the 
definition of “Incentives” in Segment 1 than it does in Segment 2. Likewise, a 
similar observation may be made with regard to Motive1 and Motive2 in defining 
the “Motivation” construct. StdEduc contributes much more to the definition of 
the “SES” construct in Segment 2. For the “SES” construct, Occstat is more 
important than StdEduc in Segment 1 but the reverse is true in Segment 2. 
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Group assignment 

The group assignment table shows for each case in the table which segment that 
case was assigned to. Ideally, inference based on group assignment would enable 
the researcher to intuit the nature of unobserved heterogeneity accounting for 
segmentation. However, where the purpose is not causal analysis but is more 
practical, as in marketing, the demonstration that segments exist and are 
differentially associated with indicator variables may be valuable information.    

Nonetheless, Becker et al. (2013: 686) urge the researcher to determine if the 
segments are “plausible”, meaning that the researcher should strive to “identify 
theoretically reasonable variables/constructs that can represent the meaning of 
the plausible segments.” If this is not possible and one or more segments remain 
without a plausible label based on theory, Becker et al. (2013: 687) suggest that 
for purposes of theory-testing, “because unobserved heterogeneity can threaten 
the validity of conclusions based on the overall sample due to significant segment 
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differences, differentiable segments that are not plausible should not be part of a 
combined sample used to test the model/hypotheses.” Rather, segments for 
which a plausible, theory-based label cannot be imputed should be treated a 
anomalies in the process of theory development. PLS-POS “segmentation 
provides a mechanism to facilitate abduction* by surfacing anomalies, which then 
must be confronted and resolved theoretically” (Becker et al., 2013: 690). (* 
abduction refers to induction based on partial information).  

 

By selecting Excel output in the “Calculation Results” tab of the 
Indicators/Calculation Results area in the lower-left of the PLS interface, results 
can be sent to a spreadsheet. 

 

The Excel spreadsheet, in turn, may be used to save group memberships to a file 
which can be imported into most statistical purposes as a variable for analysis. 
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Labeling the segments 

Labeling the segments in PLS-POS involves the same considerations as in PLS-
FIMIX. The reader is referred to the discussion above in the section on FIMIX. 
 

Multi- group Analysis (MGA)   

Overview  

PLS multigroup analysis is used to determine if the PLS model significantly differs 
between groups. Examples of this use are: 

1. Testing if segments formed by FIMIX or POS differ from each other. If no 
segment differs significantly in path coefficients from any other segment, a 
one-segment solution is warranted and the traditional PLS algorithm may 
be used. 

2. Testing if the PLS model differs between groups formed by cluster analysis, 
factor analysis, multidimensional scaling, or other external statistical 
procedures. 

3. Testing if the PLS model differs between groups for measured variables 
(e.g., testing if the model differs between males and females, assuming 
gender is a measured variable). This is the purpose illustrated in the 
example below. 

MGA, also called parametric multigroup analysis, uses independent samples t-
tests to compare paths between groups, as  proposed by Kiel et al. (2000).  MGA 
is “parametric” because significance testing requires the assumption of 
multivariate normal distributions, unlike traditional PLS. 

Video documentation on multi-group analysis in SmartPLS 3 is provided by the 
publisher at https://www.smartpls.com/documentation/pls-multigroup-analysis. 

Measurement invariance 

The outer model is the “measurement” model because it determines how 
constructs in the inner model are measured. Put another way, the outer model 
determines the meaning of the constructs in the inner model.   
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The issue of “measurement invariance” arises in multigroup analysis (see below), 
in which the researcher seeks to determine if the model is the same or different 
between groups (e.g., between males and females).  This comparison of models 
makes logical sense only if the inner model constructs are measured the same in 
each group and thus have the same meaning. That is, establishing measurement 
invariance is a necessary prerequisite for performing multigroup analysis. In 
SmartPLS, measurement invariance is tested using the MICOM procedure 
described below in the section on the “Permutation” algorithm. 

The example model 

For purposes of illustrating MGA, we use the same Motivation model discussed 
for traditional PLS above.  The model is reproduced in the figure below. It is the 
same as MotivationR, which is reflectively modeled and which was discussed 
above.  

 

This time, however, we will use Gender as basis for multigroup comparison. As 
Gender is not part of the model, click the “Show all Indicators” button in the 
lower-right panel of the PLS interface, Indicators tab, as illustrated below. Gender 
appears in the variable list. 
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Defining groups 

Prior to running MGA, it is necessary to define groups. Double-click on the desired 
data file (here, jobsat), causing the data view to appear on the right. Then click 
the “Generate Data Groups” button/icon as illustrated below. 
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In the “Generate Data Groups” page shown below, you may: 

1. Optionally change the prefix for group names. The default prefix is 
“GROUP_”. This example accepts the default name. 

2. Enter the indicator (observed variable) name in the “Group column 0:” box, 
using the drop-down list of possible indicators in the current dataset. For 
this example, Gender is selected, labeled “Gender (2 unique values)”.. 

3. Optionally add up to two additional indicators to be used when forming 
groups (left blank in this example). 

4. Optionally change the “Minimum cases” value from its default value of 10. 
Groups will be formed only if as large or larger than the “Minimum cases” 
value. The default was accepted in this example. 

5. Click the OK button (lower right, not shown) to go to data view of 
jobsat.txt. 
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In data view of jobsat.txt, open the “Data Groups” tab if not already open. This 
tab shows for this example that there are two Gender groups of 451 and 481 
records respectively.  

If the cursor is hovered to the right of the two groups, the “Delete” and “Edit” 
buttons appear. Clicking the “Edit” button leads to the “Configure Data Group” 
window, where groups may be renamed. Below, GROUP_0 is renamed “Male”. 
Not shown, GROUP_1 is renamed “Female”. 

 

Group names change in data view: 
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Running MGA 

After defining groups, highlight the MotivationR project in the Project Explorer 
(the upper left pane in the SmartPLS interface) and click the “Calculate” icon at 
the far right of the menu bar at the top. Select “Multi-Group Analysis (MGA)”, 
giving the MGA “Setup” tab dialog below. Check “Male” to assign Groups A to 
males. Similarly, check “Female” for Groups B, as shown below. 

 

As the PLS solution does not follow a known distribution, bootstrapped 
significance is the available option. The “Bootstrapping” tab is the tab which gives 
parameters for significance testing. It was also illustrated and discussed above 
and in the section on estimation with bootstrapping above. For this example, the 
only change from the defaults is to reset “Subsamples” from the default 500 to a 
much larger number (5,000) more suitable for confirmatory analysis. 

The “Weighting” tab is also the same as discussed above. For this example, the 
defaults are accepted. 
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After assigning groups and filling out the tabs as desired, click the “Start 
Calculation” button in the lower right. Bootstrapped standard errors and 
significance levels take a while to compute (about two minutes for this small 
dataset with two groups).  
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Multi-group output 

Overview 

Since the procedure just outlined runs the traditional PLS algorithm, but with 
groups, the basic report is the same as for that algorithm, discussed above and 
not treated here.  However, the report (shown below) now has columns for 
“Male” and “Female” in addition to “Complete”.  This figure is the top of the 
report saved by clicking the “Export” button shown below, then selecting “HTML” 
(Excel and R export is also available) under the “Calculation Results” tab for MGA 
output in the output options pane in the lower left of the PLS interface.  

 

 (Note the figures above and below are for SmartPLS 3.23. Earlier versions had a 
separate “HTML” button in the corresponding figure above, and had separate 
“Complete”, “Male”, and “Female” links in the report table of contents below.).   
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The report provides path coefficients separately for the Female and Male groups, 
along with bootstrap-estimated standard deviations, t-values, and significance p-
values as well as confidence intervals.  While the standardized path coefficients in 
the structural (inner) model are higher for Males than for Females, is this 
difference significant? The bootstrap t-test answers this question in the output 
section below on confidence intervals. Note that for the path from Incentives to 
Motivation, the confidence intervals overlap (Female, from 0.4249 lower to 
0.5611 upper; Male 0.4553 lower to 0.5932 upper). The confidence intervals for 
the path from SES to Motivation also overlap. Overlapping confidence intervals 
mean that at the .05 significance level, we fail to reject the null hypotheses that 
there is no difference in path coefficients between the Male and Female samples. 

In summary, for the example data, all paths in the structural model (the path from 
Incentives to Motivation and the path from SES to Motivation) are significant for 
both Males and Females, as shown in the p-Values columns. The same inference 
may be taken by noting that 0 is not within the confidence limits of Males or 
Females in the “Confidence Intervals” columns.  
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The differences between the Male and Female models may also be viewed 
graphically. 

 

The figure above displays path coefficients and average variance extracted for the 
Male and Female models, using absolute highlighting for paths. We can see that 
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the models are similar in path weights, reflected in path widths. However, the 
numeric values of the path coefficients differ somewhat. 

Testing for segment difference 

By using t-tests, MGA reintroduces distributional assumptions into PLS, which 
otherwise is a distribution-free procedure. Note also that when sample size is 
large, even small differences in coefficients may test as significant. Therefore, 
inspection of the distance between coefficients is still recommended, particularly 
if entropy is low, indicating that segments may not be interpretable.  

The “Bootstrapping Results” table in the “Path Coefficients” section of Smart-PLS 
output report the Male and Female path coefficients, means, standard errors, t-
values, and p-values, as shown in the figure below. The exact coefficients will vary 
from run to run of the MGA model.  

The difference between Male and Female path coefficients is subject to three 
tests. These significance tests by default use the .05 significance level. The three 
methods of testing the significance of path differences are: 

1. PLS-MGA: This non-parametric significance test finds a difference to be  
significant if the p-value is smaller than 0.05 or larger than 0.95 for the 
difference of group-specific path coefficients. This method (see Henseler et 
al., 2009) is an extension of the original nonparametric Henseler's MGA 
method as described, for example, by Sarstedt et al., 2011, and is the most 
commonly used test. 
 

2. Parametric Test: This is a similar method but is parametric, assuming that 
groups have equal variances.   

3. Welch-Satterthwait Test: This is an alternative parametric test, assuming 
unequal variances between groups. 

For further discussion, see Sarstedt et al. (2011). Hair et al. (2014: 247-255) 
present the manual approach, including formulas and a worked example. 

Examining the p-value columns, the difference is not significant by any of the 
tests. We may say that the same PLS structural path model applies to both Males 
and Females. 
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Other group comparisons. SmartPLS outputs similar tables, not shown here, for 
comparing and testing the difference by group for outer (measurement) weights, 
outer loadings,  indirect effects, total effects, R-square, average variance 
extracted (AVE), composite reliability, and Cronbach’s alpha as well as for path 
coefficients).  For the example data, there is no significant difference by gender 
on any of these coefficients.  
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Bonferroni adjustment 

Note that when there are multiple t-tests rather than just one, the computed 
probability level of significance is too liberal and may involve incurring Type I 
errors (false positives). That is, the nominal .05 level used by the researcher as a 
cut-off will be too high and requires adjustment. One common, albeit 
conservative, adjustment is the Bonferroni adjustment for multiple independent 
tests. The Bonferroni adjustment calls for reducing the alpha significant level by 
the number of tests used as a denominator. For instance, if .05 alpha is desired 
for 5 independent t-tests, then .05/5 = .01 should be the required computed level 
to achieve an underlying real level of .05.  

The permutation algorithm.  As discussed in the section below, the permutation 
algorithm provides a different approach to measuring inter-group differences. 

Permutation algorithm (MICOM) 

Overview 

The permutation algorithm may be used to compare groups. Additionally, the 
algorithm may be used to implement the PLS-SEM measurement invariance 
assessment procedure (MICOM) described by Henseler, Ringle, & Sarstedt’s 
(2015). MICOM is used to show if significant inter-group differences are due to 
inter-group differences in constructs (e.g., SES) when assessing composite models 
(composite models are discussed above). For further exposition, see Dibbern & 
Chin (2005) and Ringle, Wende, and Becker (2015). 

It is assumed that the researcher has already created groups, as discussed above 
in the multi-group analysis section. By default, 1,000 random samples are drawn 
from each group (without replacement), though for stability of results, 5,000 is 
recommended for the final analysis run. 

When this option is selected in the “Calculate” button menu, output includes both 
PLS multigroup analysis using the permutation test, and includes MICOM results 
used for assessing measurement invariance. 
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The example model 

In this section, the MotivationF.splsm model described above is used. MotivationF 
has the same variables as in the section on multigroup analysis. 

Running the permutation algorithm 

To run the permutation algorithm with the example data, highlight the 
MotivationR project in the Project Explorer (the upper left pane in the SmartPLS 
interface) and click the “Calculate” icon at the far right of the menu bar at the top. 
Select “Permutation”.  

The “Permutation” window shown below appears. Set Group A and Group B to 
previously-defined groups (here, Female and Male). Optionally reset the number 
of permutations from the default of 1,000 to 5,000 for greater stability of results. 
The default settings of .05 alpha significance for two-tailed tests are normally 
accepted. Click the “Start Calculation” button to run the analysis. 

 

The “Partial Least Squares” and “Weighting” tab defaults were accepted for this 
example. These tabs are the same as described previously above.  
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Permutation algorithm output 

The permutation process is illustrated in histograms of the permutation sample 
results for any given path coefficient, such as the histogram below for the path 
from SES to Motivation. 

 

Permutation-based significance test results for the PLS model comparing the 
Female and Male groups are shown in the output below. Similar output, not 
shown, contains corresponding tests for outer loadings, outer weights, indirect 
effects, total effects, R-Square, average variance extracted (AVE), composite 
reliability, Cronbach’s alpha. MICOM results are discussed below. 

 

Single User License. Do not copy or post.



PARTIAL LEAST SQUARES (PLS-SEM)          2016 Edition 
 

Copyright @c 2016 by G. David Garson and Statistical Associates Publishing Page 185 
 

The permutation test results confirm no significant difference between Female 
and Male groups for the structural (inner) model, as all “Permutation p-values” in 
the far right column are above the .05 cutoff. 

Measurement invariance (MICOM) tests 

The measurement invariance of composite models (MICOM) procedure is 
designed to test that the measurement (outer) model is the same between 
groups. Since the indicators in the outer model determine the meaning of the 
constructs in the structural (inner) model, lack of measurement invariance means 
that even though the constructs for, say, the “Female” and “Male” groups carry 
the same labels, this is deceptive because the constructs measure different 
things. MGA tests make sense only if there is measurement invariance, meaning 
only if the inner model constructs measure the same things.   

MICOM therefore is a logically necessary step prior to conducting multi-group 
analysis (MGA).  Hult et al. (2008: 1028) thus note that “failure to establish data 
equivalence is a potential source of measurement error (i.e., discrepancies of 
what is intended to be measured and what is actually measured), which 
accentuates the precision of estimators, reduces the power of statistical tests of 
hypotheses, and provides misleading results.” 

 MICOM is detailed in Jörg Henseler, Christian M. Ringle, & Marko Sarstedt, 
“Testing measurement invariance of composites using partial least squares” 
(forthcoming in International Marketing Review (2015), available here. 

In SmartPLS, MICOM tests are part of the output of the “Permutation” algorithm. 
The MICOM procedure, the output of which is shown in the figure below, is a 
three-step process, analyzing: 

1. Configural invariance. Configural invariance exists when the model in each 
group has the same number of constructs in the inner model and the same 
indicators in the outer model. Configural invariance also requires that an 
indicator in one group be coded in the same manner as in another group 
(e.g., dummy coding), that data treatment be the same (e.g., 
standardization or missing values treatment), and that algorithmic options 
and settings be the same.  SmartPLS online documentation states, “Running 
MICOM in SmartPLS usually automatically establishes configural 
invariance.” Statistical output does not apply to this step and is not shown. 
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2. Compositional invariance: “Step 2” is a test of the invariance of indicator 

weights for measurement (outer) paths between groups. Taking the 
example data, a vector of indicator weights for men and another vector of 
corresponding indicator weights for women may be computed as a 
measure of difference in measurement models between groups. If there is 
compositional invariance, scores created by the indicator weights for the 
observed groups should correlate perfectly with scores created by the 
indicator weights vectors for pooled data. The permutation algorithm does 
this by creating two groups of the same size as the observed groups, but 
populating them with randomly sampled observations (sampling without 
replacement) from the pooled data. MICOM output displays “Permutation 
p-values” which test if item loadings in the outer model are invariant across 
groups. If not significant, as in the example below,  the observed 
correlation of indicator vectors do not differ significantly from that for 
same-size groups populated randomly from the pooled data, showing that  
the indicator vectors are not different from each other either. Specifically, 
the algorithm tests the null hypothesis that correlation, c, in the original 
(Female and Male) data equals one. If 𝑐 is smaller than the 5%-quantile of 
the distribution of 𝑐 in the permutations for pooled data, the hypothesis 
of compositional invariance is rejected. A finding of non-significance means 
that compositional invariance may be assumed. This will happen when the 
correlations are not significantly lower than 1.0, as for the example data 
below. 
 

3. Scalar invariance (equality of composite means and variances): “Step 3”  
tests for scalar invariance in a manner analogous to that described for Step 
2, detailed in Henseler, Ringle, & Sarstedt (2016). MICOM output shows 
“Permutation p-value” tests for intergroup differences in means and 
variances for each of the inner model constructs. For the example output 
shown further below, all are non-significant.  

If Steps 2 and 3 both return findings of non-significance there is “full 
measurement invariance”.  If only Step 2 returns findings of non-significance, 
there is “partial measurement invariance”.  The following actions may ensue: 

• With full measurement invariance, pooling the data is warranted and MGA 
may be unnecessary. Henseler, Ringle, & Sarstedt  (2016) somewhat more 
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leniently recommend pooling only if most structural effects are invariant. 
Note that pooling will increase statistical power. 

• If there is compositional invariance, the researcher may proceed with MGA 
for purposes of comparing models in the sense of comparing structural 
paths across groups. Henseler, Ringle, & Sarstedt  (2016) recommend 
interrupting MICOM analysis when Step 2 upholds compositional invariance 
in order to run MGA to determine if structural invariance exists, prior to 
interpreting results for Step 3. 

• Requiring scalar invariance (Step 3) also – full measurement invariance – is 
a quite stringent and conservative requirement, though necessary if means 
are to be compared across groups or if data are to be pooled. More 
leniently, Steenkamp & Baumgartner (1998) suggest that sufficient scalar 
invariance exists if at least two indicators of a construct have equal loadings 
and/or intercepts across groups. 

• Even more stringent and conservative would be requiring equal error 
variance and therefore this level of invariance is typically not sought. 

For the example data, there is full measurement invariance.  

Type I and Type II error 

Note that the statistical power of the MICOM procedure is unknown, meaning 
that the risk of Type II error (false negatives) is unknown. Also, when more than 
two groups are compared the number of tests increases exponentially, inflating 
risk of Type I error unless some penalty adjustment (e.g., see discussion of 
Bonferroni adjustment above) is applied, though doing so in too stringent a 
manner may increase the risk of Type II error. Future simulation research and 
sensitivity analysis may throw light on these issues. For now it may be observed 
that while Type II risk is unknown, power increases and risk decreases as sample 
size increases, making MICOM more reliable for larger samples. 
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PLS regression modeling with SmartPLS 

PLS regression: SmartPLS vs SPSS or SAS 

Output in SmartPLS regression is quite different from that in SPSS or SAS due to 
fundamental differences of approach. SmartPLS requires explicit specification of 
latent constructs prior to analysis. In the model below, two constructs are 
stipulated, one for predictors and one for response variables. In PLS regression in 
SPSS and SAS there is no requirement to specify the number of latent constructs 
or dimensions a priori nor to associate indicator variables with particular 
dimensions. Rather, the researcher can accept the default number of dimensions.  

Even if the researcher constrains the model to the same number of dimensions as 
in the SmartPLS solution, the factors computed by SPSS or SAS will be data-driven 
dimensions rather than the theory-driven dimensions required by SmartPLS 
modeling. In SAS and SPSS, the same constructs explain both the predictor and 
the response indicators, whereas in SmartPLS regression models there are 
separate constructs for the predictors and the response indicators. Therefore the 
coefficients will be different and have a different meanings, and model fit will 
differ as well. Most SmartPLS users would rarely perform PLS regression modeling 
at all. Rather they would perform PLS-SEM modeling as described above, 
specifying the number of exogenous and endogenous factors in advance and 
associating specified indicators with each, along with structural arrows connecting 
factors as suggested by theory. SPSS and SAS do not support PLS-SEM modeling.  

PLS regression: SPSS vs. SAS 

Due to different algorithms and different options, the factors created by SPSS and 
SAS differ in composition and meaning, although for each all factors cumulatively 
explain 100% of the variance in the measured predictor and response variables. 
SPSS defaults to 4 and SAS to 5 factor solutions. SPSS handles nominal and ordinal 
dependent indicators as categorical whereas SAS assumes all dependent 
indicators are continuous. SPSS and SAS exhibit differences which lead to 
different path coefficients and different model fit for many PLS regression 
models.  

Single User License. Do not copy or post.



PARTIAL LEAST SQUARES (PLS-SEM)          2016 Edition 
 

Copyright @c 2016 by G. David Garson and Statistical Associates Publishing Page 190 
 

Example 

In this section a set of two response variables (happy, life) are predicted from a 
set of three predictor variables (race, age, prestg80), coded as follows:  

• happy: General happiness, 1=Very Happy, 2=Pretty Happy, 3=Not Too 
Happy; a categorical variable  

• life: Is life exciting or dull?, 1=Exciting, 2=Routine, 3=Dull; a 
categorical variable  

• race: Race of respondent, 1=White, 2=Black, 3=Other; a categorical 
variable  

• age: Age of respondent; a continuous variable  
• prestg80: Occupational prestige of respondent; a continuous variable  

Data were from the SPSS sample file, 1991 U.S. General Social Survey.sav, but 
with multiple imputation of missing values since SmartPLS wants a dataset 
without missing values. The resulting dataset was labeled HappyLife.csv and is 
available above. 

Data input and model creation. Same as described above for SmartPLS path 
modeling.  

Creating a simple regression model in SmartPLS 

In this example a simple regression model is created in which race age, and 
occupational prestige predict happy and life attitudes. In the usual type of PLS 
regression model there are two factors, one for the predictor variables and one 
for the response variables. All measured predictor variables are indicators for the 
predictor factor and all measured dependent variables are indicators for the 
dependent factor. The graphical model is shown below. 
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When the model is run by selecting Calculate > PLS Algorithm, from the SmartPLS 
menu, path coefficients appear near the measurement and structural arrows in 
the model. If desired, the R-squared value may be displayed within the dependent 
factor (ellipse) is the R-squared value for the dependent factor, which indicates a 
weak model for these data.  
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SmartPLS output for PLS-regression 

Statistical output parallels that displayed and discussed above for PLS-SEM 
modeling in SmartPLS. Only partial output corresponding to the graphical model 
above is illustrated below.  

Path coefficient  

In a PLS regression model there is only one path, from the construct for the 
predictors to that for the dependents. SmartPLS output is shown below. 
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The histogram output is interesting in path models, where there are multiple 
paths in the structural (inner) model, but is trivial here. Below, such histograms 
are not displayed. The path coefficient is the same as that displayed in the 
completed path diagram above. 

Outer loadings and weights 

Path output for the measurement (outer) model may be displayed as loadings or 
weights, shown below. Path “loadings” are those shown by default in the 
completed path diagram above and are what is usually meant by “path 
coefficients” in reflective PLS models, as in the current example.  See the previous 
discussion above regarding the choice between indicator loadings and weights. 

Single User License. Do not copy or post.



PARTIAL LEAST SQUARES (PLS-SEM)          2016 Edition 
 

Copyright @c 2016 by G. David Garson and Statistical Associates Publishing Page 194 
 

 

Model fit/quality criteria 

To assess model fit, SmartPLS outputs the following coefficients in the default PLS 
algorithm: 

R Square 
f Square 
Average Variance Extracted (AVE) 
Composite Reliability 
Cronbach's Alpha 
Discriminant Validity 
Collinearity Statistic (VIF) 
SRMR 
 

These coefficients were discussed in a previous section above., or click on specific 
links in the list above. 
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Cronbach’s alpha 

Although fit and quality measures were discussed previously above, Cronbach’s 
alpha output is shown as an illustration below. Cronbach’s alpha is a common 
measure of convergent validity, measuring the internal consistency of constructs. 
By common rule of thumb, .60 or higher is adequate reliability for exploratory 
purposes, .70 or higher is adequate for confirmatory purposes, and .80 or higher 
is good for confirmatory purposes. Here Cronbach’s alpha is below .60, a sign that 
the indicators for the “Predictors” construct and for the “Dependents” construct 
do not cohere well. This implies the constructs are multi-dimensional rather than 
unidimensional. Multidimensionality is one reason that the R-squared between 
the two constructs is low. In this example. 

 

Composite reliability 

Composite reliability is a somewhat more lenient convergent validity criterion 
often favored by PLS researchers. It uses the same cutoffs as for Cronbach’s 
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alpha. For the current example, this reliability measure shows good reliability for 
the “Dependents” construct but poor reliability for the “Predictors” construct. 

 

Other output 

SmartPLS produces a variety of other output not illustrated here: 

Indirect Effects 
Total Effects 
Latent Variable Scores 
Residuals 
Stop Criterion Changes 
Base Data 
Setting 
Inner Model 
Outer Model 
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Indicator Data (Original) 
Indicator Data (Standardized) 
Indicator Data (Correlations) 

 

PLS regression modeling with SPSS 

Overview 

SPSS added PLS starting with version 16, in 2007. It implements PLS regression 
(projection to latent structure regression), not full PLS path modeling as described 
above for SmartPLS. In the menu system it is found under Analyze > Regression > 
Partial Least Squares.  

The PLS algorithm extracts a latent factors (technically, components since 
principal components analysis is used) for the set of independent variables and 
for the set of dependent variables, such that explanation of the covariance 
between the two latent variables is maximized. Using multiple regression for scale 
variables, a classification algorithm for categorical variables, or a mixed model, 
the dependent variable or variables is predicted.  

SPSS recommends PLS regression as “particularly useful when predictor variables 
are highly correlated or when the number of predictors exceeds the number of 
cases” (from SPSS online help for PLS). 

Python runtime environment. SPSS PLS is an extension which requires the Python 
Extension Module be installed separately.  Further information about installing 
the PLS module for SPSS is found in the FAQ section below.  

SPSS example 

Data for the example used in this section was the SPSS sample file, 1991 U.S. 
General Social Survey.sav, available above. The dependent and independent 
variables may be continuous (interval, scale) or categorical (nominal or ordinal, 
which are treated equivalently). In variable view in the SPSS worksheet, the 
researcher should make sure that the variables to be used in the model are at the 
desired and proper level. For the example data as downloaded here, the levels 
are as follows: 
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age  scale 
prestig80 scale 
race  nominal 
happy  ordinal 
life  ordinal 
 

If the researcher is uncertain about data levels, when PLS is first run in SPSS, the 
window below appears. If “Define Variable Properties” is clicked, SPSS will analyze 
the data distribution of specified variables and will suggest the appropriate data 
level.  

 

Also note that in the main SPSS window for PLS, show below, in the “Variables” 
tab, the researcher may highlight and right-click any variable to set its data level 
on a temporary basis (for the current session). 

For these data, a set of two response variables (happy, life) are predicted from a 
set of three predictor variables (race, age, prestg80), coded as follows:  

• happy: General happiness, 1=Very Happy, 2=Pretty Happy, 3=Not Too 
Happy; a categorical variable  

• life: Is life exciting or dull?, 1=Exciting, 2=Routine, 3=Dull; a 
categorical variable  

• race: Race of respondent, 1=White, 2=Black, 3=Other; a categorical 
variable  

• age: Age of respondent; a continuous variable  
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• prestg80: Occupational prestige of respondent; a continuous variable  

SPSS input 

Prior to running SPSS’s PLS module, load the dataset described above (1991 U.S. 
General Social Survey.sav) and, if needed, specify the data levels of variables to be 
employed as described above.  

After the SPSS PLS module is installed, select Analyze >  Regression > Partial Least 
Squares to bring up the dialog below.  
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Under the “Variables” tab, drag the dependent and independent variables to their 
respective locations as shown in the figure above. SPSS can tell the data level of 
each and marks each independent variable with symbols shown in the illustration 
(a ruler symbol for continuous, a bar chart for ordinal, and three circles for 
nominal variables).  For the dependent variables, which here are ordinal, the 
default is for the highest level to be the reference level. The reference level may 
be changed by highlighting one of the dependent variables (e.g., happy), yielding 
other reference level options. 

The Model and Options tabs are also illustrated below. In this example the default 
settings are accepted under the Model Tab. The default for the Options tab is 
nothing checked, but here checks were added so as to obtain output described 
below in the “SPSS output” section. 
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The three options above are: 

Save estimates for individual cases. Saves predicted values, residuals, distance to 
latent factor model, and latent factor scores by case (observation). This option  
also plots latent factor scores. 

Save estimates for latent factors. Saves latent factor loadings and latent factor 
weights and plots latent factor weights. 

Save estimates for independent variables. Saves regression parameter estimates 
and variable importance to projection (VIP). This option also plots VIP by latent 
factor. 
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SPSS output  

Proportion of variance explained by latent factors 

This section of the output lists latent factors by rows (here, there are 4). The 
"cumulative X variance" is the percent of variance in the X variables (the 
predictors) accounted for by the latent factors. Four factors were necessary to 
explain 100% of the variance in the dependent variable. The "cumulative Y 
variance" is the percent of variance in the Y variables (the dependent variables) 
accounted for by the latent factors.  

A well-fitting model would explain most of the variation in both the X and Y 
variables, which is not the case in this example. The cumulative R-square is 
interpreted as in regression. "Adjusted R-square" penalizes for model complexity 
(increasing number of factors). The more a factor explains in the variation of the X 
variables, the more it well reflects the observed values of the set of independent 
variables. The more a factor explains of the variation in the Y variables, the more 
powerful it is in explaining the variation in a new sample of dependent values, 
which is why the "Cumulative Y Variance" equates to "R-Square" in the table 
below.  

 

PRESS (predicted error sum of squares) 

Not shown above, but when cross-validation is requested, the variance explained 
table will also contain a column for the PRESS statistic, first proposed by Allen 
(1974). In the “Proportion of Variance Explained” table above, the lowest PRESS 
statistic flags the row with the best-fitting model. That is, the row with the lowest 
PRESS statistics shows the optimal number of useful latent factors.  
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However, when PRESS statistic values differ only by very small amounts, on 
parsimony grounds the researcher may opt to re-run the model requesting the 
number of factors for the row corresponding to the fewest factors for the set of 
rows all comparably small on the PRESS statistic.  That is, PRESS tends to be higher 
for more complex models (ex., more factors), just as R2 is. An adjusted PRESS 
statistic to compensate for potential bias has been proposed (Hastie & Tibshirani, 
1990) but is not incorporated in SPSS or SAS output. Nonetheless, the researcher 
should be aware of the parsimony issue. 

The PRESS statistic is computed using a leave-one-out method.  Using a jackknife 
technique, the dependent variable can be predicted using the full dataset and for 
the dataset leaving out a given case. This can be done for all cases, leaving one 
out each time. The difference in estimates of the dependent variable between the 
full dataset and the leave-one-out dataset for the given case is the PRESS residual 
for that case. The sum of these squared residuals is the PRESS statistic. All other 
things equal, the lower the PRESS statistic, the better the model in terms of 
prediction, where prediction is defined as prediction to the leave-one-out data. In 
actual software calculation, formulae have been developed not requiring an 
iterative procedure to arrive at the PRESS statistic (see, for ex., Tarpey, 2000). 

Latent component weights and loadings 

Loadings and weights both indicate how much each independent variable 
contributes to the axis representing the four factors (technically, components) 
shown in the four columns of the table below. The sign indicates the direction of 
the correlation. The "weights" are X-loadings, representing the directions of the 
lines for each independent in X-space. Weights are used to plot the position of 
independent and dependent variables in factor space, as illustrated below. The 
"loadings" are X-weights, representing the correlation of X variables with the Y-
scores.  

Typically, X-weights and X-loadings are similar in sign. Loadings, as in principal 
components factor analysis, are used to impute meanings for the components  
(ex., Component 1 is heavily associated with occupational prestige). By one rule of 
thumb in confirmatory PLS factor analysis, loadings should be .7 or higher to 
confirm that independent variables identified a priori are represented by a 
particular factor (Hulland, 1999: 198).  
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However, the .7 standard is a high one and real-life data may well not meet this 
criterion, which is why some researchers, particularly for exploratory purposes, 
will use a lower level such as .4 for the central factor and .25 for other factors 
(Raubenheimer, 2004). In any event, factor loadings must be interpreted in the 
light of theory, not by arbitrary cutoff levels. If factors can be convincingly 
labeled, then one may use R-square contributions from the proportion of variance 
explained table above to assign relative importance to, say, occupational prestige 
(factor 1) vs. race (factor 4). To the extent that variables are cross-loaded, such 
comparisons may be unwarranted or misleading.  
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Variable importance in the projection (VIP) for the independent 
variables 

VIP coefficients reflect the relative importance of each X variable for each X factor 
in the model. VIP coefficients thus represent the importance of each X variable in 
fitting both the X- and Y-scores, since the Y-scores are predicted from the X-
scores. As a rule of thumb advanced by Wold (1994), the researcher may wish to 
drop from the model any independent variable which (a) has a small VIP (< .8) on 
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all factors, and (b) also has a regression coefficient (see "parameter estimates" 
below) small in absolute size. Here, race is a candidate for deletion. 

 

Regression parameter estimates by dependent variable 

In the example below, the dependents had three levels. Level 3 is treated by 
default as the reference category, which is why the table below does not have 
columns for Happy=3="Not too happy" or Life=3="Dull". The parameter estimates 
are the regression coefficients used in conjunction with the independent 
variables, which are both categorical and covariate variables, to predict the 
dependent variables. The sign of the coefficient indicates the direction of the 
effect. For instance, below, being white rather than other race (the reference 
category for race) is associated positively with being very or pretty happy 
compared to not too happy, and with finding life to be exciting rather than dull. 
Being white rather than other race is negatively associated with finding life 
routine compared to dull.  
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Charts/plots 

In SPSS, the following plots are available.  

Plots of variable importance to projection (VIP) by latent factor: This plot simply 
reproduces in graphic form the cumulative VIP scores from the "Variable 
importance in projection" table above. For this example, occupational prestige is 
the most important predictor for all four factors used to predict the response 
variables.  
 

 
 
Plots of latent factor scores: In this plot matrix, the X and Y scores for each factor 
are plotted against each other for the three levels of the first dependent variable, 
Happy. These plots show the direction toward which each PLS X-factor is 
projecting with respect to the Y factors. For instance, in the example below, the X-
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scores for factor 1 are associated with increasing values on Y-scores for factor 3, 
but with decreasing Y-scores for factor 4. Overall, however, the prevalence of 
horizontal lines in the plot matrix reflects a weak model, with a low percent of 
variance explained.  
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It is also possible to plot X scores from one PLS factor against the X scores for a 
different PLS factor. In the example below, X-scores for factor 1 are negatively 
related to X-scores for factor 3, but are largely unrelated to those for factor 2.  
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Plots of latent factor weights 

In SPSS, these are plotted for the first three latent factors. Variables located near 
the 0,0 mark contribute little to model fit. Variables further from the origin 
contribute more to differentiating the X factors (dimensions). Variables which 
contribute little on the X factors which explain the bulk of the variance in Y are 
variables which the researcher may wish to drop from the model; dropping them 
may improve the Y-variance explained. The plot for factor 1 vs. 2 is shown below, 
but there are also plots for the other possible pairs of factors among the first 
three.  
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Residual and normal quantile plots 

Based on saved residual values, these are a means for identifying outlier 
observations. Residual plots and normal quantile plots also help identify non-
normality and heteroscedasticity of error terms. A cloud-like residual plot with 
most cases in the middle third of the plot indicates heteroscedasticity and 
normality assumptions are not violated. In the case of normal quantile plots, 
points on a straight line indicate the normality assumption is not violated.  

Saving variables 

Clicking the "Options" tab in the SPSS PLS main dialog allows the user to save 
variables to a SPSS dataset. The dataset name should be unique or the file will be 
overwritten. One may save predicted values, residuals, distance to latent factor 
model, latent factor scores, latent factor loadings, latent factor weights, 
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regression parameter estimates and variable importance to projection (VIP) 
coefficients.  

PLS regression modeling using SAS 

Overview 

SAS statistical software implements PLS regression under PROC PLS. In PROC PLS 
one set of latent factors is extracted for the set of manifest independent variables 
and another set of latent factors is extracted simultaneously for the set of 
manifest response (dependent) variables. The extraction process is based on 
decomposition of a crossproduct matrix involving both the independent and 
response variables. The X-scores of the independent latent variables are used to 
predict the Y-scores or the response latent variable(s), and these predicted Y 
scores are used to predict the manifest response variables. The X- and Y- scores 
are selected by PLS so that the relationship of successive pairs of X and Y scores is 
as strong as possible.  

Though SAS was constrained in the example below to computer the same number 
of factors (4) as SPSS, the factors are entirely different, having in common only 
the fact that cumulatively all four explain 100% of the variance in the measured 
predictor and response indicators. See the discussion  above about differences 
between SPSS and SAS. The factors in SmartPLS, SPSS, and SAS PLS regression 
models are not comparable in meaning or coefficients even though all seek to 
calculate parameter estimates for the same indicators using the same data.  

For the same regression models, SAS online help recommends use of PROC CALIS 
as more efficient than its PROC PLS regression procedure. This follows the 
common preference among statisticians for causal modeling using covariance-
based structural equation models (SEM) over variance-based modeling 
represented by PLS.  PROC CALIS is discussed in the separate Statistical Associates 
“Blue Book” volume on “Structural Equation Modeling.” 

Further discussion of PLS regression is found in the SPSS section above. 
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SAS example 

The same example data is used here for the SAS example as for SPSS. In this 
model the independent variable set includes age, race, and prestg80. The 
dependent variable set includes happy and life. 

The data file is labeled USGSS1991.sas7bdat and is available above. See also the 
discussion above of differences among SAS, SPSS, and SmartPLS implementations 
of PLS regression modeling. 

SAS syntax 

The syntax below contains the code entered into SAS's Editor window to run the 
model in this section. Text with slash and asterisk symbols constitute comments 
not implemented by SAS. Note SAS has numerous additional options not 
illustrated here.  

LIBNAME in "C:\Docs\David\Statistical Associates\Current\data"; 
    /* LIBNAME declares the data directory and calls it 'in' */ 
    /* LIBNAME calls this folder 'in' but you can have a different name */ 
ODS HTML; /*turn on html output*/ 
ODS GRAPHICS ON; /*turn on ods graphics*/ 
TITLE "PROC PLS EXAMPLE" JUSTIFY=CENTER; /* Optional title on each page */ 
PROC PLS DATA=in.USGSS1991 DETAILS CENSCALE PLOTS(UNPACK)=(CORRLOAD(TRACE=OFF) VIP 
XYSCORES DIAGNOSTICS);  
 /* Use USGSS1991.sas7bdat in the in directory */ 
 /* DETAILS lists details of the fitted model for each factor */ 
 /* CENSCALE lists centering & scaling information */ 
 /* PLOTS = gives correlation loadings plot, variable importance plot, and */ 
  /* X-Scores vs. Y-Scores plot */ 
 /* DIAGNOSTICS IN the PLOTS option list gives residual plots */ 
 /* A CV=SPLIT(2) option could have requested cross-validation using */ 
 /* every 2nd case */ 
 /* A NFAC= option would set the number of factors to a specific number; */      
 /*  otherwise it is the number of predictors */ 
 /* A MISSING=EM option could request data imputation of missing values */ 
  /* using expectation maximization */ 
CLASS race; 
   /* CLASS declares categorical predictors. */ 
 /* The ordinal dependent variables must be treated as interval */ 
MODEL  happy life = race age prestg80 /  SOLUTION; 
 /* The syntax is MODEL response-variables = predictor-effects /<options >; */ 
   /* By default, data are centered and no intercept is needed  */ 
 /* Add INTERCEPT as an option to use raw data with an intercept */ 
 /* SOLUTION lists final coefficients  */ 
RUN; 
ODS GRAPHICS OFF; 
ODS HTML CLOSE; 
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Note that by default, SAS centers and scales both the predictor and response 
variables.  If values are already centered around 0 or a target value, then the 
NOCENTER option should be used in the PROC  PLS statement.  If   values are all 
on the same or comparable scale, then the NOSCALE option may be used in the 
PROC PLS statement to suppress scaling. 

SAS output 

R-square analysis 

R-square analysis provides an indication of model fit. Unless a NFAC- option 
specifies fewer, SAS will extract as many factors as there are predictor variables (5 
in this example). Below, 79% of the predictor variables are explained by the first 
three factors and 100% by the first four. However, on the dependent variable side 
(for which the manifest variables are life and happy), only about 2% is explained 
even on the last factor. 

 

The “R-Square Analysis” plot shows the cumulative percent of variance explained 
by each factor. This contains the same data as the table above, but in graphic 
form. The R-squared for the dependent variables hugs the X axis, reflecting a very 
weak model. 
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Correlation loading plot 

By default, SAS generates the plot below if ODS graphics are turned on. For the 
first two factors it shows the location in factor space of all covariates (recall happy 
and life are treated as covariates) and of all levels of categorical predictor 
variables. It reflects the loadings of both predictor and response variables scaled 
so distance from the origin corresponds to percentage of variation in the variable 
explained by the PLS factor model.  

The concentric circles display the percentages explained, with further from the 
origin being higher percent explained by the model. Predictor effects closer to the 
origin are less well explained by the factors. The dependent manifest variables, 
happy and life, are close to the origin because this is a weak model. The axes 
display the R-squared values of each factor in explaining the X (predictor) and Y 
(response) indicators and it can be seen that the R-squared values for the Y 
(response) variables are very weak in this model. Note that the PLOTS= option in 
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the PROC PLS statement has the capability to generate a large number of other 
plots not illustrated here.  

 

Corresponding tables of model effect loadings, model effect weights, and 
dependent variable weights are also output but not shown here. 

Variable Importance Plot 

The variable importance plot (VIP) shows the relative importance of each of the 
continuous predictor variables and each level of the categorical predictor 
variables. Here it is seen that in the weak model, pretg80 has the greatest effect 
on the set of dependent variables (happy, life), followed by race1 (black), with age 
having the least effect. 
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The VIP plot reflects the contribution of each predictor variable to PLS model fit, 
for both the predictor and response sets.  Values on the Y axis are the “Variable 
Importance for Projection” statistic developed by Herman Wold (1994) to 
summarize these contributions. Wold in Umetrics (1995) stated that a value less 
than 0.8 was "small". This is which a horizontal  guideline is displayed at the 0,8 
mark of the Y axis. Here, age is the only variable with small effect by Wold’s 
definition. 

Response scores by predictor scores plots 

Response scores by predictor scores plots, also called X-Y score plots, show model 
fit and also show outliers. 
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In the figure below, relative lack of model fit is shown by the dot pattern not 
forming an ascending pattern with higher X axis values roughly corresponding to 
higher Y axis values.  As there is no ascending trend, it is difficult to speak of 
outliers to it. However, the observation numbers floating in the upper half of the 
figure are exceptions to the prevailing horizontal pattern in the lower portion of 
the figure. 

 

Note that the figure above plots X-Y scores for Factor 1, always the most 
important factor in the model. However, there are similar figures for the 
remaining factors and these may well show different patterns. 

Residuals plots 

The DIAGNOSTICS specification in the PLOTS= option of the PROC PLS statement 
produces a variety of residuals plots, of which only two are depicted below, both 
dealing with predicting the manifest dependent variable “happy”.  
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The “Distribution of Residuals” plot in the upper portion of the figure ideally 
should be normally distributed but bimodally deviates from normal. It should be 
normal because most estimates should be close to “right on”, making for   
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residuals close to zero, with declining absolute residuals on either side. The Q-Q 
plot in the lower half of the figure below confirms that residuals are not normally 
distributed since the pattern does not closely follow the ascending line shown. 

Parameter estimates 

If the SOLUTION option is used in the MODEL statement, SAS outputs parameter 
estimates for the centered and uncentered data. These are the coefficients used 
to predict the raw (Y) response variables based on the raw (X) predictor variables. 
Unlike estimates in regression models, the error distribution is unknown and so 
no significance tests are presented. The parameter estimates, therefore, are often 
treated as an “internal” computational result of little interest to the researcher.  
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Summary 

From the PLS output above, the researcher would conclude that contrary to the 
belief of some, life/happiness values do not closely associate with age, race, and 
occupational status as a set of determinants, for the example data drawn from a 
U.S. national sample in 1991. 

 

PLS regression modeling using Stata 

Overview 

Though neither PLS-SEM or PLS-regression is part of the official version of Stata, 
Adrian Mander  of the University of Cambridge has made available an extension 
called “plssas.” It is available from http://fmwww.bc.edu/RePEc/bocode/p or 
Stata users may type “help pls” at the command line. 
 
The plssas module simulates implementation of PLS regression in SAS. 
Specifically, it creates “.sas” program code for a PLS regression, runs SAS in the 
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background, and converts SAS output datasets to comma-delimited .csv files. The 
Windows version of SAS is required.    
 
The syntax is  plssas [varlist] [, options] – for example, plssas, 
y(income14 jobstat14 x(educ14 GPA) exe(C:\SAS\sas.exe). In this 
syntax, y() contains the list of outcome variables and x() contains the list of 
predictors. The exe() term contains the path to the SAS executable program file.  
 
Upon running plssas, the following comma-separated values files are created: 
      yweights.csv 
      xweights.csv 
      xload.csv 
      xeff.csv 
      pest.csv 
      perc.csv 
      csp.csv 
      codedcoef.csv 
      out.csv 
In addition a file labeled “temp.sas” is created, containing the SAS syntax to 
assemble output into a file labeled “temp.csv”, which can be imported into SAS.    
 
As plssas module implements only a subset of SAS PLS commands and as it 
requires the user to have SAS, implementation of PLS regression directly in SAS 
may well be preferred. For this reason, implementation of plssas in Stata is not 
treated further here. 

Assumptions 

Robustness 

In general, PLS is robust in the face of missing values, model misspecification, and 
violation of the usual statistical assumptions of latent variable modeling (Cassel et 
al., 1999, 2000). Although conventional PLS is quite robust, note various authors 
have advanced versions of “robust PLS” not discussed here (cf., Yin, Wang, & 
Yang, 2014). 

Specifically with regard to robustness of bootstrapped significance testing in PLS, 
McIntosh, Edwards, & Antonakis (2014: 229) note, “the bootstrapped confidence 
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intervals demonstrated by Henseler et al. appear reasonably robust to violations 
of normality and divergence between analytical and bootstrap sampling  
distributions, at least for the relatively simple models examined by Henseler et al. 
Future simulation work is needed that considers more complex models, different 
sample sizes, and additional violations of assumptions to determine when this 
approach might break down.” (Referring to Henseler et al., 2014). 

Parametric v. non-parametric 

Traditional PLS is usually described as a distribution-free approach to regression 
and path modeling, unlike structural equation modeling using the usual maximum 
likelihood estimation method, which assumes multivariate normality (see 
Lohmoller, 1989: 31; Awang, Afthanorhan, & Asri, 2015).  It is possible to use PLS 
path modeling with highly skewed data (Bagozzi and Yi, 1994). PLS-FIMIX, which 
does use maximum likelihood estimation, is parametric and is the exception 
among PLS algorithms. However, the multi-group analysis/permutation approach, 
which has superseded PLS-FIMIX, is non-parametric. 

Reinartz, Haenlein, & Henseler (2009: 332), in a simulation study, found 
covariance-based SEM to be “extremely robust with respect to violations of its 
underlying distributional assumptions”, making  selection of PLS-SEM over 
covariance-based SEM questionable if done on the grounds that PLS-SEM is non-
parametric. 

Note that while PLS itself is distribution free, adjunct use of t-tests and other 
parametric statistics may reintroduce distributional assumptions. However, 
Marcoulides and Saunders (2006, p. vi) have noted that even moderate non-
normality of data will require a markedly larger sample size in PLS, even if 
indicators are highly reliable. Based on simulation studies, Qureshi & Compeau 
(2009) found neither PLS nor SEM could consistently detect differences across 
groups when the dependent variable was highly skewed or kurtotic, though both 
PLS and SEM detected inter-group differences in other paths in the model not 
involving the dependent. However, Hsu, Chen, & Hsieh (2006), using simulation 
studies to compare PLS, SEM, and neural networks for moderate skewness, found 
that "all of the SEM techniques are quite robust against the skewness scenario" 
(pp. 368-369).  
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Treating traditional PLS as nonparametric refers to its use without parametric 
tests of significance. However, apart from questions of significance, as in other 
procedures, distributions affect effect size. Two variables from different 
distributions have a maximum correlation less than 1.0, whereas two variables 
from the same distribution (ex., normal) have a maximum correlation of 1.0. That 
is, if two variables come from different distributions (e.g., bimodal versus normal) 
and are optimally matched in order (ex., ascending order), the correlation will be 
less than 1.0.  If the researcher’s definition of “perfect association” between two 
variables is optimal matching given the distributions, then PLS (and other 
techniques) assumes the same distribution and, for most situations, that same 
distribution will be the normal distribution. If the researcher’s definition of 
“perfect association” between two variables is unconditional, then the “same 
distributions” consideration does not apply. 

Independent observations 

Some authors state that observations need not be independent in PLS (see 
Lohmoller, 1989: 31; Chin & Newsted, 1999; Urbach & Ahlemann, 2010), 
apparently based on the statement by Herman Wold (1980: 70) that, "Being 
distribution-free, PLS estimation imposes no restrictions on the format or on the 
data." However, being distribution-free does not mean data independence can be 
ignored or that use of repeated measures data is not problematic. Ignoring the 
assumption of independence is a form of measurement error and since PLS is 
relatively robust in the face of measurement error, in this sense only is it true that 
PLS does not require independent observations. Wold in his 1980 article did not 
state PLS handles repeated measures data in spite of him being cited to the 
contrary. More to the point, PLS is a single-level form of analysis, not a form of 
multilevel analysis. If there is some grouping variable that might be handled via 
multilevel analysis (ex., time, for repeated measures), and if it has a limited 
number of levels, it may be possible to handle it within PLS by creating separate 
factors for each level (ex., time1, time2, time3). Note, though, that PLS is less 
powerful than covariance-based structural equation modeling for such repeated 
measures models since SEM can model correlated residual error and PLS cannot.  
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Data level 

In SmartPLS path modeling, continuous (metric) indicator variables are assumed 
since the iterative algorithm uses OLS regression. Binary indicator variables are 
acceptable in reflective models but violate regression assumptions in formative 
models since the binary indicator serves as a dependent variable in such models.  

However, as PLS-SEM is robust against measurement error, use of binary variables 
in formative models is widely accepted. For the same reason, use of ordinal 
indicators is commonly accepted (Henseler, Ringle, & Sarstedt, 2012: 266). In 
SmartPLS nominal variables must be implemented as a series of dummy variables, 
or a nominal variable can be the grouping variable for multigroup PLS. Neusrel 
software, however, supports PLS-SEM modeling even with nominal variables.  

Dependent and independent manifest variables may be any level (nominal, 
ordinal, or interval) in SPSS PLS-regression. In SAS PLS-regression, independent 
indicators may be of any level but dependent indicators are treated as interval.  

Unobserved homogeneity 

This assumption refers to the problem of "unobserved heterogeneity in the global 
model". Like other procedures, coefficients generated by traditional PLS may be 
misleading averages when subgroups differ significantly in the ways in which the 
independent variables relate to the response variables. Also, unobserved 
heterogeneity may lead to results without plausible interpretation and to low 
goodness of fit measures. Finite mixture PLS (FIMIX-PLS) or prediction-oriented 
segmentation (PLS-POS) should be used to test for significant segmentation and if 
found significant, should be used to generate models for the multiple segments 
provided the segments are interpretable (see the discussion of entropy as an 
interpretability measure for FIMIX).  

Becker et. al. (2013: 684), based on extensive simulation analysis, determined, 
“we can conclude that the use of either PLS-POS or FIMIX-PLS is better for 
reducing biases in parameter estimates and avoiding inferential errors than 
ignoring unobserved heterogeneity in PLS path models. A notable exception is 
when there is low structural model heterogeneity and high formative 
measurement model heterogeneity: in this condition, FIMIS-PLS produces results 
that are even more biased than those resulting from ignoring heterogeneity and 
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estimating the model at the overall sample level. PLS-POS shows very good 
performance in uncovering heterogeneity for path models involving formative 
measures and is significantly better than FIMIX-PLS, which shows unfavorable 
performance when there is heterogeneity in formative measures. However, 
FIMIX-PLS becomes more effective when there is high multicollinearity in the 
formative measures, while PLS-POS consistently performs well.” 

Alternatively, some authors use cluster analysis to segment the sample prior to 
using PLS, then create one global (traditional PLS) model per cluster. See the 
separate Statistical Associates “Blue Book” volume on “Cluster Analysis”. This 
approach, however, requires that the variables associated with heterogeneity be 
measured indicators or interactions among measured indicators. 

Linearity 

PLS output may be distorted due to nonlinear data relationships using SmartPLS, 
SPSS, or SAS. PLS-SEM modeling using Neusrel handles nonlinearities.  

Outliers 

As with other procedures, PLS results may be distorted due to the presence of 
outliers.  

Residuals 

Residuals should be uncorrelated with independent variables and should be 
random normal, as in other predictive procedures.  

Appropriate sample size 

Along with robustness, handling small samples is another reason why PLS is 
sometimes preferred over structural equation modeling. However, while PLS can 
be computed even for very small samples (ex., <20) or even when cases are fewer 
than the number of indicator variables, reliance on small samples can yield flawed 
results. Ed Rigdon (2014) has noted, “ Yes, PLS will produce parameter estimates 
when n is very low, and the bootstrapping approach will produce estimates of 
sampling variability when n is low, but you have to ask what those estimates are 
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really worth. They won't cross-validate, and the out-of-sample performance of 
those numbers will be extremely poor. “ 

Some authors (ex., Barclay, Higgins, & Thompson, 1995; Chin, 1998) recommend 
PLS users follow a similar "rule of 10" guideline as SEM users: at least 10 cases per 
measured variable for the larger of (1) the number of indicators in the largest 
latent factor block, or (2) the largest number of incoming causal arrows for any 
latent variable  in the model. Note, however, that appropriate sample size choice 
is more complex than any rule of thumb. The appropriate size depends in part 
both on the degree that factor structure is well defined (ex., are weights > .70) 
and how small are the path coefficients the researcher seeks to establish (prove 
different from 0; ex., a much larger sample is needed to establish path 
coefficients of .1 than .7).  The “rule of 10” may yield sample size with inadequate 
statistical power.  

The larger the sample, the more reliable the PLS estimates. Thus, Hui and Wold 
(1982) in simulation studies found that the average absolute error rates of PLS 
estimates diminished as sample size increased. Small sample sizes (ex., < 20) will 
not suffice to establish weak path coefficients (ex., <=.2); sample sizes equivalent 
to those commonly found in SEM (ex., 150-200) are needed (see Chin & Newsted, 
1999).  

Simulation studies.  

• Marcoulides & Saunders (2006), based on simulation studies, have 
published a table (p. vii) addressing the question of "what sample sizes 
would be needed to achieve a sufficient level of power, say equal to .80 
(considered by most researchers as acceptable power) to reject the 
hypothesis that the factor correlation in the population is zero." Their 
Monte Carlo results show that while, indeed, PLS estimates may be reliable 
for very small samples (ex., 17), this is true only when factor loadings are 
large and the researcher is examining high factor correlations. On the other 
hand, their experiments suggested, for example, that using indicators with 
0.7 factor loadings and examining factor correlations of .2, a sample of size 
1,261 would be required to achieve the .80 power level. A sample size of 98 
was sufficient for loadings equal or greater than .6 when establishing 
correlations equal or greater than .4. A sample size of 23 was sufficient for 
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loadings equal or greater than .7 when establishing correlations equal or 
greater than .6.  

• Qureshi & Compeau (2009) also used Monte Carlo simulation to research 
related issues. They found PLS better than SEM when data were normally 
distributed, with a small sample size and correlated exogenous variables. 
They also found, however, that with large sample sizes and normally 
distributed data, both approaches consistently detected differences across 
groups. Neither PLS nor covariance-based SEM performed well for datasets 
where the dependent was non-normal, though for smaller samples at 
moderate effect sizes, PLS outperformed SEM in detecting intergroup 
differences in other paths in the model (paths not involving the 
dependent).   

• Reinartz, Haenlein, & Henseler (2009) likewise used Monte Carlo simulation 
found that for smaller samples (ex., 100), PLS-SEM achieved acceptable 
levels of statistical power. For larger samples (ex., 250), however, 
covariance-based SEM was clearly better than PLS-SEM in terms of 
parameter accuracy and consistency. For any size sample, PLS-SEM had 
greater power than covariance-based SEM and thus might be preferred for 
purposes of model-trimming in theory development as Type II error would 
be lower. 

• Henseler, Dijkstra, Sarstedt, et al. (2014), based on simulation studies,  
found that PLS-SEM generally required sample sizes similar to traditional 
SEM, though PLS-SEM could converge in the face of small samples when 
traditional SEM could not. They note (p. 198), “With regard to statistical 
power, it can be expected that covariance-based SEM, as a full information 
estimator, will most of the time deliver smaller standard errors than limited 
information estimators such as PLS.” Smaller standard errors correspond to 
greater statistical power. 

Missing values 

While PLS has been found to be robust in the face of missing values (Cassel et al., 
1999, 2000), accuracy will be increased in PLS or any procedure if values are 
imputed rather than the default taken (listwise deletion of cases with missing 
values). As a rule of thumb, imputation of a variable is often called for when more 
than 5% of its values are missing. If too missing values are too numerous, 
however, the variable should simply be dropped from analysis. Hair et al. (2014: 
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55) suggest “too numerous” is greater than 15%, but researchers vary on the 
appropriate cutoff. 

SmartPLS software only offers listwise deletion or mean substitution, a procedure 
generally derogated. It is better to impute data in a major statistical package 
outside of SmartPLS. See the separate Statistical Associates “Blue Book” volume 
on “Missing Value Analysis and Data Imputation.“ 

Model specification 

Like almost all multivariate procedures, PLS results may differ markedly if 
previously-omitted important causal variables are added to the model, though  
PLS is less sensitive to inclusion of spurious causal variables correlated with 
indicator variables. Note that modeling a factor as reflective when in reality it is 
formative, or vice versa, is a misspecification form of measurement error. Jarvis, 
MacKenzie, & Podsakoff (2003) found this to be one of the most common 
measurement errors in PLS research. Formative and reflective models are 
discussed above.  

With regard to robustness against model misspecification, Henseler, Dijkstra, 
Sarstedt et al. (2014) write, “Full-information approaches” (like covariance-based 
SEM – DG) “often suffer … because model misspecification in a subpart of a model 
can have detrimental effects on the rest of the model (Antonakis, Bendahan, 
Jacquart, & Lalive, 2010). In contrast, limited information methods are more 
robust to misspecification and are therefore useful for the analysis of initially 
formulated but misspecified models (Gerbing & Hamilton, 1994). Consequently, 
there are good reasons to prefer PLS as a limited-information approach over full-
information approaches when the correctness of all parts of a model cannot be 
ensured.”  

Appropriate model fit assessment 

As discussed above, model fit assessment in PLS-SEM differs for formative models 
as compared to reflective models. In particular, using composite reliability, 
Cronbach’s alpha, and AVE for assessing fit of formative models is not 
appropriate. Hair et al. (2012) has found this to be a widespread error in reporting 
PLS-SEM models. 
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Recursivity 

Most PLS-SEM software, including SmartPLS, assume a recursive model. That is, 
there cannot be any circular feedback loops in the model. Neusrel, discussed 
below, supports non-recursive PLS-SEM models. 

Multicollinearity 

Perfect multicollinearity within a set of indicators for a factor prevents a solution 
and requires dropping the redundant indicator. 

High multicollinearity among the indicators is generally not a problem. Gustafsson 
& Johnson (2004) found PLS to be resilient in the face of multicollinearity. . Note, 
however, that this does not mean that multicollinearity just "goes away." 
Multicollinearity of the factor indicators in the measurement model (the outer 
model) is still problematic for high correlations between indictors for one factor 
and indicators for another. To the extent this type of multicollinearity exists, PLS 
will lack a simple factor structure and the factor cross-loadings will mean PLS 
factors will be difficult to label, interpret, and distinguish.  For multicollinearity of 
indicators within the set for a single factor, the researcher should check the 
content of the items to make sure that high correlation is not due to some artifact 
such as non-substantive word variations of items.  

High multicollinearity among the indicators in formative models is highly unusual 
since for formative models, the indicators represent a complete set of the 
separate dimensions which compose the factor. The dimensions are not expected 
to correlate highly. For instance, for the factor “Philanthropy”, formative items 
might be dollars given to church, dollars given to environmental causes, dollars 
given to civil rights causes, etc. Different respondents will give in different 
patterns and correlation of items will not be high.  

Regarding multicollinearity among the factors, since the PLS factors are 
orthogonal, by technical definition mathematical multicollinearity is not a 
problem in PLS. This is a major reason why PLS models may be selected over OLS 
regression models or structural equation modeling  
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Proper use of dummy variables 

The dummy variable representing desired reference category must be omitted in 
the model. Coefficients for the remaining dummy variables in the set for a given 
categorical variable must be interpreted with respect to the reference category. 
When refining a model, dummy variables are treated as a set: the entire set is 
added to or deleted from the model.  

Standardized variables 

When interpreting output, keep in mind that all variables in the model have been 
centered and standardized, including dummy variables for categorical variables.  

 

Frequently Asked Questions 

How does PLS-SEM compare to SEM using analysis of covariance 
structures?   

The primary difference between variance-based PLS and covariance-based SEM in 
SPSS AMOS, SAS, or Stata,  is that PLS is component-based, using OLS regression 
in PLS-SEM or using principal components analysis in PLS-regression. In contrast, 
SEM is covariance-based, using common factor analysis, with the result that the 
latent variables in each are constructed quite differently as described earlier 
above. That is, the meanings of the latent variables will differ for the same model 
using analysis of covariance structures (ordinary SEM) compared to analysis of 
principal components in PLS-SEM. A corollary is that most of the model fit 
measures differ between the two.  

In PLS-regression, a variance-based approach, principal components analysis 
seeks optimal components which reproduce the total variance of the variables. 
Principle components analysis determines the factors which can account for the 
total (unique and common) variance in a set of variables. Manifest variables 
reflect the total variance and unique variance explained by the components, plus 
error variance not explained by the components. This approach to creating latent 
variables is appropriate for creating a typology of variables or reducing attribute 
space, or for exploratory purposes, or for non-causal prediction. 
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As a variance-based approach. PLS-SEM using OLS regression seeks to maximize 
the explained variance in the endogenous latent variables and subsequently of 
the indicators for them.  Covariance-based SEM (hereafter called CB-SEM for 
convenience of contrast), seeks to minimize the difference between the observed 
and model-implied covariance matrices. The common factor analysis used in CB-
SEM seeks optimal factors which  reproduce the covariation among the variables. 
Common factor analysis determines the least number of factors which can 
account for the common variance in a set of variables. Manifest variables reflect 
the common variance explained by the factors, plus unique and error variance not 
explained by the factors. This approach to creating latent variables is appropriate 
for confirming that the hypothesized dimensionality of a set of variables such as a 
set of items in a scale, is consistent with the observed data. It is also appropriate 
for confirming that hypothesized causal relations and their associated implied 
covariance matrix, are consistent with the observed data.   

Other statistical and practical differences between PLS-SEM and CB-SEM: 

• CB-SEM is used much more widely than PLS-SEM, especially in sociology 
and the primary social sciences. PLS-SEM has been more widespread in 
specialized fields, such as market research, where prediction is a central 
research goal.  

• PLS-SEM lacks global model goodness-of-fit (GOF) measures, which are a 
central feature of CB-SEM.  This advantage of CB-SEM is one major reason it 
is preferred for confirmatory research. The global scalar function used as 
the basis of most GOF measures in CB-SEM involve minimizing the residuals 
reflecting the difference between the observed and the model-implied 
covariance matrices. PLS-SEM lacks any such global GOF criterion and the 
goodness-of-fit measures used in CB-SEM do not appear in PLS-SEM output. 

• Parameter estimates tend to be more accurate in CB-SEM than in PLS-SEM 
(see Reinartz, Haenlein, & Henseler, 2009). PLS-SEM is associated with a 
bias which tends to underestimate structural path parameters and 
overestimate measurement path parameters (see Hair et al., 2014: 47-48). 
PLS-SEM bias becomes negligible when sample size is large and the number 
of indicators per latent variable is large (Lohmöller, 1989). Simulation 
studies suggest PLS-SEM bias is low in most situations (Reinartz et al., 2009; 
Ringle et al., 2009). 
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• When the assumptions of CB-SEM are violated (inadequate sample size, 
non-normal data, lack of parsimony), standard errors in CB-SEM are inflated 
and PLS-SEM tends to exhibit lower variability of estimates (Reinartz et al., 
2009). 

• CB-SEM uses maximum likelihood estimation whereas standard PLS-SEM 
uses ordinary least squares. The former requires larger sample sizes. For 
smaller samples, PLS-SEM is sometimes preferred. 

• Compared to CB-SEM, PLS-SEM makes fewer distributional assumptions 
about the data, as discussed above.  

• PLS-SEM will have greater statistical power and hence fewer Type II errors 
at any sample size. 

• Whereas CB-SEM may be prone to problems with models being 
underidentified, especially with small samples, PLS-SEM is not constrained 
by identification considerations associated with small samples. PLS-SEM is 
much more likely to converge for small samples than CB-SEM. CB-SEM 
cannot handle data at all when sample size is less than the number of 
variables whereas PLS-SEM can handle even this. Henseler, Dijkstra, 
Sarstedt, et al. (2014: 199) observe, based on their simulation studies, that 
“nonconvergence and Heywood cases occur quite frequently with common 
factor models (Krijnen, Dijkstra, & Gill, 1998) and that PLS in general only 
rarely has convergence problems (Henseler, 2010).” 

• Single-indicator variables may cause identification and convergence 
problems in CB-SEM, but are not a problem in PLS-SEM, whose 
practitioners are more likely to use single-indicator variables. 

• PLS-SEM converges quickly and is less likely to fail to converge on a solution 
compared to CB-SEM.  A corollary is that compared to CB-SEM, PLS-SEM 
may be able to handle much larger and more complex models.  

• As illustrated in the figure below, PLS-SEM models indicators without error 
whereas CB-SEM models error terms explicitly. Likewise, PLS-SEM models 
endogenous latent factors without disturbance terms.  As a result, CB-SEM 
is more useful for modeling different error assumptions. 
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While the choice between CB-SEM and PLS-SEM depends on the researcher’s 
purpose and data, as a rule of thumb, PLS-SEM is used for exploratory purposes 
and analysis of covariance structures (ordinary SEM) is used for confirmatory 
purposes (e.g., see Hair et al., 2014: 2).  CB-SEM and PLS-SEM each yield different 
information and in some research contexts, both may be used on a 
complementary basis. 

What are higher order/hierarchical component models in PLS-SEM? 

Models dealt with in this volume are “first-order models” because all latent 
variables are based on observed (measured, manifest) indicator variables. A 
“higher-order model” is one in which at least one of the latent variables has as its 
indicators not the usual measured variables but rather at other latent variables in 
the causal model. Also called “hierarchical component models” (HCM), in 
principle higher order models might have several levels. In practice, almost all 
involve just second-order factors.  

Three major reasons for using HCM are given by Hair et al. (2014: 229-230): 

1. To reduce the number of structural relationships under analysis in PLS, for 
parsimony reasons. 

2. To deal with collinearity among first-order latent constructs by using them 
to create more general second-order constructs. 

3. When formatively-modeled indicators for a first-order construct are 
collinear, if justified by a theoretical rationale, the indicators may be 
separated into sets, each set being the indicators for a different formative 
first-order construct, then these first-order constructs may formatively 
measure a second-order construct. 

Recall that in HCM, the centroid weighting scheme may not be used, as discussed 
above. 

Let there be multiple first order components (FOCs) each measured reflectively or 
formatively by multiple measured indicators. Let the second order component 
(SOC) be the higher order latent variable. As discussed by Ringle et al. (2012) and 
others, there are four types of higher order models in PLS: 

1. Reflective-Reflective: The SOC is measured reflectively by the FOCs (arrows 
go from the SOC to the FOCs) and, in a ”repeated indicators approach” (the 
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most common but not the only approach), also reflectively by all of the 
indicator variables for all of its FOCs (arrows go from the SOC to all of the 
repeated indicators). The same indicators are modeled reflectively with 
respect to each FOC (arrows go from the FOC to their own indicator 
variables). This is perhaps the most common type. 

2. Reflective-Formative: The indicators for the FOCs are modeled reflectively 
as is the entire set of repeated indicators for the SOC (as in reflective-
reflective models), but the SOC is modeled formatively with respect to the 
FOCs (arrows go from the FOCs to the SOC). 

3. Formative-Reflective: The indicators for the FOCs are modeled formatively 
as is the entire set of repeated indicators for the SOC, but the SOC is 
modeled reflectively with respect to the FOCs (arrows go from the SOC to 
the FOCs). 

4. Formative-Formative: The indicators for the FOCs are modeled formatively 
as is the entire set of repeated indicators for the SOC, and the SOC is 
modeled formatively with respect to the FOCs (arrows go from the FOCs to 
the SOC). 

In the repeated indicator approach for reflective-reflective and formative-
formative models, the FOCs will explain nearly all of the variance in the SOC (R2 
will approach 1.0). The corollary is that paths from other latent variables prior in 
causal order to the SOC will approach 0. In such a situation, a two-stage approach 
is recommended: (1) first the repeated indicator approach is used to get factor 
scores for the FOCs, then (2) the FOC factor scores are used as indicators for the 
SOC. In both stages, other latent variables are included in the model also. 

For further discussion and a worked example of HCM with respect to SmartPLS, 
see Hair et al. (2014: 229-234). For another example, see Wetzels, Odekerken-
Schroder, & van Oppen (2009).  

How does norming work? 

To understand how norming a set of values to range from 0 to 100, consider the 
simple case of values for a set which varies from 3 to 7. After norming, 3 should 
become 0, 7 should become 100, and 5 (the middle value) should become 50. This 
can be accomplished with the following formula: 

Normed value = 100*[(original value -  minimum)/(maximum – minimum)] 
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• Thus the normed value for 5 = 100*[(5-3)/(7-3)] = 100*[2/4] = 50 
• Likewise for the value for 7 = 100*[(7-3)/(7-3)] = 100*[4/4] = 100 
• And for the value of 3 = 100*[(3-3)/(7-3)] = 100*[0/4] = 0 

For purposes of norming the unstandardized latent variable scores for 
importance-performance matrix analysis (IPMA, discussed above), the same 
formula may be applied, as it may to any series. 

What other software packages support PLS-regression? 

PLS-GUI, from the PLS Institute, is software which extends SmartPLS functionality. 
SA input, it reads in SmartPLS models (.spslm files) and data in comma-delimited 
(.csv) or SPSS (.sav) files. Primary features are 2- and 3-group MGA (multigroup 
analysis) and use of jackknifing estimates (leave-one-out) of standard errors in 
addition to bootstrapping (random resampling with replacement). PLS-GUI also 
performs linear path analysis and interfaces with (calls) R Commander, a 
statistical package which adds non-linear, logistic, generalized linear, generalized 
additive, mixed-effects, and other modeling procedures, with dozens of high 
definition graphics options.  The PLS-GUI url is http://www.pls-institute.org/.  

GENSTAT is a full-featured statistics package which also implements PLS 
regression. Url: http://www.vsni.co.uk/software/genstat . 

The Unscrambler. This software from Camo, Inc. implements PLS regression and 
PLS-DA, a PLS-based version of discriminant analysis. Url: 
http://www.camo.com/rt/Products/Unscrambler/unscrambler.html . 

MorphoJ supports two-block partial least squares modeling. Url: 
http://www.flywings.org.uk/MorphoJ_page.htm . 

tpsPLS is free software also supporting two-block partial least squares modeling, 
geared toward analysis of shapes as well as variables. Url: 
http://tpspls.software.informer.com/ . 

XLSTAT-PLS is an add-on module for Excel spreadsheets, supporting PLS 
regression as well as principal component regression (PCR). Url: 
http://www.xlstat.com/en/products-solutions/pls.html . 

Implementations of PLS regression also exist for S-Plus, Matlab, and R, among 
others. 
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How is PLS installed for SPSS? 

This section is quoted from SPSS 22 installation notes. 

The Partial Least Squares Regression procedure is a Python extension command 
and requires IBM® SPSS® Statistics - Essentials for Python, which is installed by 
default with your IBM SPSS Statistics product. It also requires the NumPy and 
SciPy Python libraries, which are freely available.  

Note: For users working in distributed analysis mode (requires IBM SPSS Statistics 
Server), NumPy and SciPy must be installed on the server. Contact your system 
administrator for assistance. 

Windows and Mac Users 

For Windows and Mac, NumPy and SciPy must be installed to a separate 
version of Python 2.7 from the version that is installed with IBM SPSS 
Statistics. If you do not have a separate version of Python 2.7, you can 
download it from http://www.python.org. Then, install NumPy and SciPy 
for Python version 2.7. The installers are available from 
http://www.scipy.org/Download. 

To enable use of NumPy and SciPy, you must set your Python location to 
the version of Python 2.7 where you installed NumPy and SciPy. The Python 
location is set from the File Locations tab in the Options dialog (Edit > 
Options). 

Windows and Unix Server 

NumPy and SciPy must be installed, on the server, to a separate version of 
Python 2.7 from the version that is installed with IBM SPSS Statistics. If 
there is not a separate version of Python 2.7 on the server, then it can be 
downloaded from http://www.python.org. NumPy and SciPy for Python 2.7 
are available from http://www.scipy.org/Download. To enable use of 
NumPy and SciPy, the Python location for the server must be set to the 
version of Python 2.7 where NumPy and SciPy are installed. The Python 
location is set from the IBM SPSS Statistics Administration Console. 

Linux Users 
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We suggest that you download the source and build NumPy and SciPy 
yourself. The source is available from http://www.scipy.org/Download. You 
can install NumPy and SciPy to the version of Python 2.7 that is installed 
with IBM SPSS Statistics. It is in the Python directory under the location 
where IBM SPSS Statistics is installed. 

If you choose to install NumPy and SciPy to a version of Python 2.7 other 
than the version that is installed with IBM SPSS Statistics, then you must set 
your Python location to point to that version. The Python location is set 
from the File Locations tab in the Options dialog (Edit > Options). 

(Not from SPSS online Help): If you have the SPSS CD, you may be able to install 
PLS using the following steps: 

1. Install SPSS (SPSS CD)  
2. Install Python (SPSS CD)  
3. Install SPSS-Python Integration Plug-in (from SPSS CD)  
4. Install NumPy and SciPy (From SPSS CD under Python and Additional 

Modules; Note this option installs Python, NumPy, and SciPy in order if they 
are not already present)  

5. Install PLS Extension available at: 
https://www.ibm.com/developerworks/mydeveloperworks/files/app/perso
n/270002VCWN/file/33319ac0-6f93-4040-9094-f40e7da9e7a8?lang=en. 
You can log in as Guest/Guest.  

6. After unzipping, copy plscommand.xml and PLS.py to the extensions 
subdirectory under the SPSS Statistics installation directory. 

What other software packages support PLS-SEM apart from 
SmartPLS? 

Neusrel, associated with a German team under Frank Buckler, is a PLS-SEM 
modeling package which supports exploratory analysis of categorical variables, 
nonlinear relationships, and interaction effects. Rather than using regression 
methods to estimate path parameters, it uses neural network analysis. Other 
features include an Excel interface, missing values data imputation using a 
nearest-neighbor algorithm, option for weighted cases, output of fit measures (R-
Square, GOF, Cronbach's alpha, composite reliability, AVE) and effect sizes (path 
coefficients, factor scores, OEAD, an IE measure for interaction effects), support 
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for both reflective and formative models, segment models, non-recursive path 
models, bootstrapped significance, cross-validation, second-order models, time 
series, and data visualization through numerous types of plots.  A trial version is 
available. Url: http://www.neusrel.com/ . 

WarpPLS. This package, first released in 2009, has been updated through 2013 as 
of this writing. It implements nonlinear (S-curve and U-curve) as well as linear 
paths and also outputs overall goodness-of-fit measures for PLS models. Other 
output includes p-values for path coefficients and also variance inflation factor 
(VIF) scores and multicollinearity estimates for latent variables. The development 
group is associated with Dr. Ned Kock of Texas A&M International University. and 
with Georgia State University. A free trial version is available. Url: 
http://www.scriptwarp.com/warppls/ . 

XLSTAT-PLSPM is path modeling software which operates as an Excel spreadsheet 
add-on. Scroll down on the company website to link to a series of tutorials. Url: 
http://www.xlstat.com/en/products-solutions/plspm.html . 

PLS-Graph. An academic program developed by Wynne W. Chin. For information 
click here.. The url is http://www.statisticssolutions.com/pls-graph-software/. See 
Gefen & Straub (2005).  

PLSPM. An R package for PLS, developed and maintained by Gaston Sanchez. 
Information at http://cran.r-project.org/web/packages/plspm/index.html. 

LVPLS. LVPLS was the original software for PLS. The last version, 1.8, was issued 
back in 1987 for MS-DOS.  

What are the SIMPLS and PCR methods in PROC PLS in SAS?  

PROC PLS in SAS supports a METHODS= statement. With METHODS=PLS one gets 
standard PLS calculations. As this is the default method, the statement may be 
omitted. With METHODS=SIMPLS, one gets an alternative algorithm developed by 
de Jong (1993). SIMPLS is identical to PLS when there is a single response 
(dependent) variable but is computationally much more efficient when there are 
many. Results under PLS and SIMPLS are generally very similar.  
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PCR. With METHODS=PCR one is asking for principal components regression, 
which predicts response variables from factors underlying the predictor variables. 
Latent variables created with PCR may not predict Y-scores as well as latent 
variables created by PLS or SIMPLS.  

Why is PLS sometimes described as a 'soft modeling' technique?  

This is an allusion to assumptions of multiple linear regression compared to PLS. 
OLS regression makes "hard" assumptions, including lack of multicollinearity 
among the independent variables, which in turn often implies few independent 
variables with well-understood relationships to the dependent variable. "Soft 
modeling" refers to modeling when these assumptions cannot be met. PLS can 
handle multicollinearity, many independent variables, and because its focus is 
prediction, not explanation, lack of well-understood relationships of the 
independents to the dependent is not critical.  

You said PLS could handle large numbers of independent variables, 
but can't OLS regression do this too?  

In principle, yes. In practice, the larger the number of independent variables, the 
greater the likelihood of multicollinearity, which renders OLS regression results 
unreliable. Moreover, when the number of variables approaches or exceeds the 
number of cases, OLS regression will "overfit" the data and one will have a 
spurious perfect fit model which will fail to have predictive power for a new set of 
data.  

Is PLS always a linear technique?  

While PLS is a linear technique, nonlinear PLS (NLPLS) has been advanced by 
Malthouse, Rasmussen, and others. This nonlinear approach combines PLS with 
feedforward neural network analysis (or in a variant with radial basis function 
neural network analysis). See Malthouse et al. (1997).  

How is PLS related to principal components regression (PCR) and 
maximum redundancy analysis (MRA)?  

All three are similar in sharing the strategy of indirect modeling, using factors 
derived from the X variables to predict factor scores of the Y variables, which are 
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then used to construct predictions of the raw Y variables. Where the PLS 
algorithm maximizes the strength of the relation of the X and Y factor scores, PCR 
maximizes the degree to which the X factor scores explain the variance in the X 
variables; and MRA maximizes the degree to which the Y factor scores explain the 
variance in the Y variables. Whereas the PLS algorithm chooses X-scores of the 
latent independents to be paired as strongly as possible with Y-scores of the 
latent response variable(s), PCR selects X-scores to explain the maximum 
proportion of the factor variation. Often this means that PCR latent variables are 
less related to dependent variables of interest to the researcher than are PLS 
latent variables. On the other hand, PCR latent variables do not draw on both 
independent and response variables in the factor extraction process, with the 
result that PCR latent variables are easier to interpret.  

PLS generally yields the most accurate predictions and therefore has been much 
more widely used than PCR. PLS may also be more parsimonious than PCR. In a 
chemistry setting, Wentzell & Vega (2003: 257) conducted simulations to 
compare PLS and PCR, finding "In all cases, except when artificial constraints were 
placed on the number of latent variables retained, no significant differences were 
reported in the prediction errors reported by PCR and PLS. PLS almost always 
required fewer latent variables than PCR, but this did not appear to influence 
predictive ability."  

Attempts have been made to improve the predictive power of PCR. Traditional 
PCR methods use the first k components (first by having the highest eigenvalues) 
to predict the response variable, Y. Hwang & Nettleton (2003: 71 ) note, 
"Restricting attention to principal components with the largest eigenvalues helps 
to control variance inflation but can introduce high bias by discarding components 
with small eigenvalues that may be most associated with Y. Jollife (1982) provided 
several real-life examples where the principal components corresponding to small 
eigenvalues had high correlation with Y . Hadi and Ling (1998) provided an 
example where only the principal component associated with the smallest 
eigenvalue was correlated with Y ." Recall variance inflation (measured in 
regression by the variance inflation factor, VIF) indicates multicollinearity: while a 
multicollinear model may explain a high proportion of variance in Y, but 
redundancy among the X variables leads to inflated standard error and inflated 
parameter estimates. Minimizing variance inflation may not minimize mean 
square error (MSE). To deal with the tradeoff between variance inflation and 

Single User License. Do not copy or post.



PARTIAL LEAST SQUARES (PLS-SEM)          2016 Edition 
 

Copyright @c 2016 by G. David Garson and Statistical Associates Publishing Page 243 
 

MSE, some researchers employ an "inferential approach", which uses only 
components whose regression coefficients significantly differ from zero (Mason & 
Gunst, 1985). More recently, Hwang & Nettleton (2003) have proposed a PCR 
selection strategy which selects components which minimize mean square error 
(MSE) demonstrating through simulations studies that their estimator performed 
superior to traditional PCR, inferential PCR, or even traditional PLS (which ranked 
second in the simulation, among many variants tested). However, it appears that 
Hwang-Nettleton estimators are not employed by current software. .  

What are the NIPALS and SVD algorithms?  

There is more than one way to compute PLS coefficients. NIPALS is the nonlinear 
iterative partial least squares method and is the most common, developed by 
Wold (1975). SVD is the singular value decomposition method, which is 
computationally more exact but also less efficient than NIPALS. Results are very 
similar by either algorithm. EIG is an algorithm basing extraction on the 
eigenvalues. RLGW uses an iterative algorithm which handles models with many 
predictor variables. In SAS, in the PROC PLS statement, the ALGORITHM= option 
may be set to NIPALS | SVD | EIG | RLGW. NIPALS is the default.  

How does PLS relate to two-stage least squares (2SLS)?  

Thomas (2005) has argued that 2SLS, as implemented by Bollen's (1996) 
instrumental variables model, is similar to PLS in being free from distributional 
requirements, is even more robust in the face of model misspecifications, and is 
superior to it in generating consistent parameter estimates in latent variable 
equations. See the separate Statistical Associates "Blue Book" volume on two-
stage least squares. 

How does PLS relate to neural network analysis (NNA)?  

Hsu, Chen, & Hsieh (2006: 369) compared PLS, SEM, and NNA in simulation 
studies, finding NNA results to be similar to PLS.  
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